Skip to main content

Laser Induced Fluid Dynamics

  • Chapter
  • First Online:
Hot Matter from High-Power Lasers

Part of the book series: Graduate Texts in Physics ((GTP))

  • 602 Accesses

Abstract

In many respects the plasma may be considered as a medium that assumes any form provided by external boundaries and forces acting on it from outside. The main parameters are a local particle density \(n(\mathbf {x}, t)\), mass density \(\rho (\mathbf {x},t)\), flow velocity \(\mathbf {u}(\mathbf {x}, t)\), and internal energy density \(\epsilon _\mathrm{in}(\mathbf {x}, t)\). Microscopic order like crystalline structure or ordered micropatterns are of no interest. Such a medium is called a fluid. Examples of fluids are water, magma, sand, air, ideal gas, but also steel under high pressure in the form press, a neutron star, and the plasma. Steel and sand are incompressible under technical pressures. At sufficiently high pressure and strain all fluids turn into compressible media.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Zeidler, H. Schnabl, P. Mulser, Phys. Fluids 28, 372 (1985)

    Google Scholar 

  2. N.C. Lee, G.K. Parks, Phys. Fluids 26, 724 (1983)

    Google Scholar 

  3. G.W. Kentwell, D.A. Jones, Phys. Rep. 145, 319 (1987)

    Google Scholar 

  4. P. Mulser, J. Opt. Soc. Am. B 2, 1814 (1985)

    Google Scholar 

  5. Ph.L. Similon, A.N. Kaufman, D.D. Holm, Phys. Fluids 29, 1900 (1986)

    Google Scholar 

  6. G. Stratham, D. ter Haar, Plasma Phys. 25, 681 (1983)

    Google Scholar 

  7. M.M. Skoric, M. Kono, Phys. Fluids 31, 418 (1988)

    Google Scholar 

  8. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1975). Sect. 2.2

    Google Scholar 

  9. C. Eckart, Phys. Rev. 58, 919 (1940)

    Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959). Chap. XV

    Google Scholar 

  11. L. Rayleigh, Philos. Mag. 34, 59 (1892); Proc. R. Soc. L XIV, 68 (1899)

    Google Scholar 

  12. L. Rayleigh, Nature 95, 66, 591, 644 (1915)

    Google Scholar 

  13. E. Buckingham, Phys. Rev. 4, 345 (1914)

    Google Scholar 

  14. L.I. Sedov, Similarity and Dimensional Methods (Academic, New York, 1959)

    Google Scholar 

  15. J.C. Gibbings, Dimensional Analysis (Springer, Heidelberg, 2011), 297 pp

    Google Scholar 

  16. C. De Izarra, J. Caillard, O. Valle, Mod. Phys. Lett. B 16, 69 (2002)

    Google Scholar 

  17. Z. Zheng et al., Optoelectron. Lett. 3, 394 (2007)

    Google Scholar 

  18. M. Murakami, M. Tanaka, Phys. Plasmas 15, 082702 (2008)

    Google Scholar 

  19. M. Murakami, K. Mima, Phys. Plasmas 16, 103108 (2009)

    Google Scholar 

  20. Ya.B. Zeldovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967)

    Google Scholar 

  21. H.E. Huntley, Dimensional Analysis (McDonald, London, 1953)

    Google Scholar 

  22. P.W. Bridgman, Dimensional Analysis, Revised edn. (Yale University Press, New Haven, 1931)

    Google Scholar 

  23. W.J. Duncan, Physical Similarity and Dimensional Analysis (Arnold, London, 1953)

    Google Scholar 

  24. G. Birkhoff, Hydrodynamics; A Study in Logic, Fact and Similitude (Princeton University Press, Princeton, 1960)

    Google Scholar 

  25. H.L. Langhaar, Dimensional Analysis and Theory of Models (Wiley, New York, 1964)

    Google Scholar 

  26. H. Görtler, Dimensionsanalyse (Springer, New York, 1975) (in German)

    Google Scholar 

  27. H.J. Spurk, Dimensionsanalyse in der Strömungslehre (Springer, Berlin, 1992) (in German)

    Google Scholar 

  28. G.I. Barenblatt, Similarity, Self-similarity, and Intermediate Asymptotics (Consultants Bureau, New York, 1979)

    Google Scholar 

  29. R.E. Kidder, Nucl. Fusion 16, 405 (1976)

    Google Scholar 

  30. G. Wilks, Dyn. Probl. Math. Phys. 26, 151 (1983)

    Google Scholar 

  31. G.W. Bluman, V.D. Cole, Similarity Methods for Differential Equations (Springer, New York, 1974)

    Google Scholar 

  32. P.G. Glockner, M.C. Singh (eds.), Symmetry, Similarity and Group Theoretical Methods in Mechanics (The University of Calgary, Calgary, 1974)

    Google Scholar 

  33. N. Euler, W.H. Steeb, P. Mulser, J. Phys. Soc. Jpn. 60, 1132 (1991)

    Google Scholar 

  34. F. Ceccherini, G. Cicogna, F. Pegoraro, J. Phys. A: Math. Gen. 38, 4597 (2005)

    Google Scholar 

  35. A. Caruso, R. Gratton, Plasma Phys. 10, 867 (1968)

    Google Scholar 

  36. P. Mulser, Z. Naturforsch. 25a, 282 (1970)

    Google Scholar 

  37. R. Fabbro, C. Max, E. Fabre, Phys. Fluids 28, 1463 (1985)

    Google Scholar 

  38. K. Eidmann et al., Phys. Rev. A 30, 2568 (1984)

    Google Scholar 

  39. M.K. Matzen, J.S. Pearlman, Phys. Fluids 22, 449 (1979)

    Google Scholar 

  40. K. Rawer, Ann. Phys. 35, 385; 42, 294 (1942)

    Google Scholar 

  41. D.T. Attwood et al., Phys. Rev. Lett. 40, 184 (1978)

    Google Scholar 

  42. A. Raven, O. Willi, Phys. Rev. Lett. 43, 278 (1979)

    Google Scholar 

  43. J.D. Lindl, P.K. Kaw, Phys. Fluids 14, 371 (1971)

    Google Scholar 

  44. G.J. Pert, Plasma Phys. 29, 415 (1983)

    Google Scholar 

  45. A.N. Drenim, Toward Detonation Theory (Springer, Berlin, 1999)

    Google Scholar 

  46. J.R. Sanmartin, J.L. Montanes, A. Barrero, Phys. Fluids 26, 2754 (1983)

    Google Scholar 

  47. W.M. Manheimer, D.G. Colombant, J.H. Gardner, Phys. Fluids 26, 2755 (1983)

    Google Scholar 

  48. R.F. Schmalz, K. Eidmann, Phys. Fluids 29, 3483 (1986)

    Google Scholar 

  49. R.F. Schmalz, Phys. Fluids 29, 1389 (1986)

    Google Scholar 

  50. M.H. Key et al., Phys. Fluids 29, 2011 (1983)

    Google Scholar 

  51. F. Dahmani, J. Appl. Phys. 74, 622 (1993); Phys. Fluids B 4, 1585 (1992)

    Google Scholar 

  52. A.G.M. Maaswinkel, K. Eidmann, R. Sigel, S. Witkowski, Opt. Commun. 51, 255 (1984)

    Google Scholar 

  53. B.K. Godwal, T.S. Shirsat, H.C. Pant, J. Appl. Phys. 65, 4608 (1989)

    Google Scholar 

  54. B. Ahlborn, M.H. Key, A.R. Bell, Phys. Fluids 25, 541 (1982)

    Google Scholar 

  55. D. Batani et al., Phys. Rev. E 68, 067403 (2003)

    Google Scholar 

  56. P. Mora, Phys. Fluids 25, 1051 (1982)

    Google Scholar 

  57. R.G. Evans, A.R. Bell, B.J. MacGowan, J. Phys. D: Appl. Phys. 15, 711 (1982)

    Google Scholar 

  58. P. Mulser, S. Hain, F. Cornolti, Nucl. Instrum. Methods Phys. Res. A 415, 165 (1998)

    Google Scholar 

  59. M.M. Basko et al., Phys. Plasmas 22, 053111 (2015)

    Google Scholar 

  60. D. Kurilovich et al., Phys. Plasmas 25, 012709 (2018)

    Google Scholar 

  61. P. Mulser, C. van Kessel, Phys. Rev. Lett. 38, 902 (1977)

    Google Scholar 

  62. J. Virmont, R. Pellat, P. Mora, Phys. Fluids 21, 567 (1978)

    Google Scholar 

  63. V.D. Shapiro, V.I. Shevchenko, in Handbook of Plasma Physics, vol. 2, ed. by M.N. Rosenbluth, R.Z. Sagdeev (North-Holland, Amsterdam, 1984), p. 168

    Google Scholar 

  64. P. Mulser, S.M. Weng, Phys. Plasmas 17, 102707 (2010)

    Google Scholar 

  65. A.J. Kemp, L. Divol, Phys. Rev. Lett. 109, 195005 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mulser .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulser, P. (2020). Laser Induced Fluid Dynamics. In: Hot Matter from High-Power Lasers. Graduate Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61181-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-61181-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-61179-1

  • Online ISBN: 978-3-662-61181-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics