Skip to main content

Human–Machine Interfaces for Motor Rehabilitation

  • Chapter
  • First Online:
Advanced Computational Intelligence in Healthcare-7

Abstract

Neurological disorders affect a large part of the population, causing cognitive and motor impairments. To that end, non-pharmacological interventions targeting support and restoration of the disrupted functions have been a major issue in modern society. New technologies enable effective communication between the affected individual and an external system, establishing the concept of a human–machine interface (HMI). This chapter seeks to describe the principles of modern noninvasive HMI systems and to present current trends regarding the methods used to capture physiological and non-physiological motor-related data in order to control external devices within a rehabilitation framework. Furthermore, in regard to classification and parameter complexity, computational intelligence tools, machine learning approaches and simulation testing are presented. The relevant applications are discussed within a taxonomy based on the nature of the motor-related source data, while methodological aspects and future challenges concerning the design of HMI systems for rehabilitation purposes are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Health topics, (n.d.). https://www.who.int/health-topics

  2. Restorative Neurology of Spinal Cord Injury. Oxford University Press, Oxford, New York (2011)

    Google Scholar 

  3. Hatem, S.M., Saussez, G., Della Faille, M., Prist, V., Zhang, X., Dispa, D., Bleyenheuft, Y.: Rehabilitation of motor function after stroke: a multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 10, 442 (2016). https://doi.org/10.3389/fnhum.2016.00442

  4. Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M.-A., Laureys, S., Gosseries, O.: Spasticity after stroke: physiology, assessment and treatment. Brain Inj. 27, 1093–1105 (2013). https://doi.org/10.3109/02699052.2013.804202

    Article  Google Scholar 

  5. Emos, M.C., Agarwal, S.: Neuroanatomy, upper motor neuron lesion. StatPearls, StatPearls Publishing, Treasure Island (FL) (2019). http://www.ncbi.nlm.nih.gov/books/NBK537305/

  6. Dworzynski, K., Ritchie, G., Fenu, E., MacDermott, K., Playford, E.D.: Rehabilitation after stroke: summary of NICE guidance. BMJ 346, f3615 (2013). https://doi.org/10.1136/bmj.f3615

    Article  Google Scholar 

  7. Nas, K., Yazmalar, L., Şah, V., Aydın, A., Öneş, K.: Rehabilitation of spinal cord injuries. World J. Orthop. 6, 8–16 (2015). https://doi.org/10.5312/wjo.v6.i1.8

    Article  Google Scholar 

  8. Cathy, S., Suzanne, A., Winston, B.: Rehabilitation is initiated early after stroke, but most motor rehabilitation trials are not. Stroke 44, 2039–2045 (2013). https://doi.org/10.1161/STROKEAHA.113.000968

    Article  Google Scholar 

  9. Kortte, K.B., Falk, L.D., Castillo, R.C., Johnson-Greene, D., Wegener, S.T.: The Hopkins rehabilitation engagement rating scale: development and psychometric properties. Arch. Phys. Med. Rehabil. 88, 877–884 (2007). https://doi.org/10.1016/j.apmr.2007.03.030

    Article  Google Scholar 

  10. Feigin, V.L., Forouzanfar, M.H., Krishnamurthi, R., Mensah, G.A., Connor, M., Bennett, D.A., Moran, A.E., Sacco, R.L., Anderson, L., Truelsen, T., O’Donnell, M., Venketasubramanian, N., Barker-Collo, S., Lawes, C.M.M., Wang, W., Shinohara, Y., Witt, E., Ezzati, M., Naghavi, M., Murray, C.: Global burden of diseases, injuries, and risk factors study 2010 (GBD 2010) and the GBD stroke experts group, global and regional burden of stroke during 1990–2010: findings from the global burden of disease study 2010. Lancet Lond. Engl. 383, 245–254 (2014)

    Google Scholar 

  11. Carbone, V., van der Krogt, M.M., Koopman, H.F.J.M., Verdonschot, N.: Sensitivity of subject-specific models to hill muscle–tendon model parameters in simulations of gait. J. Biomech. 49, 1953–1960 (2016). https://doi.org/10.1016/j.jbiomech.2016.04.008

    Article  Google Scholar 

  12. Andreoni, G., Parini, S., Maggi, L., Piccini, L., Panfili, G., Torricelli, A.: Human machine interface for healthcare and rehabilitation. In: Vaidya, S., Jain, L.C., Yoshida, H. (eds.) Advanced Computational Intelligence Paradigms in Healthcare-2, pp. 131–150. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72375-2_7

  13. Rudisch, J., Butler, J., Izadi, H., Zielinski, I.M., Aarts, P., Birtles, D., Green, D.: Kinematic parameters of hand movement during a disparate bimanual movement task in children with unilateral Cerebral Palsy. Hum. Mov. Sci. 46, 239–250 (2016). https://doi.org/10.1016/j.humov.2016.01.010

    Article  Google Scholar 

  14. Reis, P., Hebenstreit, F., Gabsteiger, F., von Tscharner, V., Lochmann, M.: Methodological aspects of EEG and body dynamics measurements during motion. Front. Hum. Neurosci. 8 (2014). https://doi.org/10.3389/fnhum.2014.00156

  15. Munzert, J., Lorey, B., Zentgraf, K.: Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res. Rev. 60, 306–326 (2009). https://doi.org/10.1016/j.brainresrev.2008.12.024

    Article  Google Scholar 

  16. Yin, Y.H., Fan, Y.J., Xu, L.D.: EMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeleton. IEEE Trans. Inf. Technol. Biomed. 16, 542–549 (2012). https://doi.org/10.1109/TITB.2011.2178034

    Article  Google Scholar 

  17. Villa-Parra, A.C., Delisle-Rodriguez, D., Souza Lima, J, Frizera-Neto, A., Bastos, T.: Knee impedance modulation to control an active orthosis using insole sensors. Sensors 17 (2017). https://doi.org/10.3390/s17122751

  18. Pons, J.L.: Rehabilitation exoskeletal robotics. IEEE Eng. Med. Biol. Mag. 29, 57–63 (2010). https://doi.org/10.1109/MEMB.2010.936548

    Article  Google Scholar 

  19. Bhatia, D., Bansal, G., Tewari, R.P., Shukla, K.K.: State of art: functional electrical stimulation (FES), Int. J. Biomed. Eng. Technol. 5, 77–99 (2011). https://doi.org/10.1504/ijbet.2011.038474

  20. Dzahir, M.A.M., Yamamoto, S.: Recent trends in lower-limb robotic rehabilitation orthosis: control scheme and strategy for pneumatic muscle actuated gait trainers. Robotics 3, 120–148 (2014). https://doi.org/10.3390/robotics3020120

    Article  Google Scholar 

  21. Herr, H.: Exoskeletons and orthoses: classification, design challenges and future directions. J. Neuro Eng. Rehabil. 6, 21 (2009). https://doi.org/10.1186/1743-0003-6-21

    Article  Google Scholar 

  22. Yue, Z., Zhang, X., Wang, J.: Hand rehabilitation robotics on poststroke motor recovery. Behav. Neurol. (2017). https://doi.org/10.1155/2017/3908135

  23. Ghosh, P., Mazumder, A., Banerjee, A., Tibarewala, D.N.: Electromyography-based functional electrical stimulation (FES) in rehabilitation. Biomed. Image Anal. Min. Tech. Improv. Health Outcomes 337–355 (2016). https://doi.org/10.4018/978-1-4666-8811-7.ch016

  24. Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G.: Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179 (2015). https://doi.org/10.1016/j.nbd.2014.11.025

    Article  Google Scholar 

  25. Martin, R., Sadowsky, C., Obst, K., Meyer, B., McDonald, J.: Functional electrical stimulation in spinal cord injury: from theory to practice. Top. Spinal Cord Inj. Rehabil. 18, 28–33 (2012). https://doi.org/10.1310/sci1801-28

    Article  Google Scholar 

  26. Takeda, K., Tanino, G., Miyasaka, H.: Review of devices used in neuromuscular electrical stimulation for stroke rehabilitation. Med. Devices Auckl. NZ. 10, 207–213 (2017). https://doi.org/10.2147/MDER.S123464

    Article  Google Scholar 

  27. Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. Front. Neurorobotics 10 (2016). https://doi.org/10.3389/fnbot.2016.00009

  28. Zhang, Y., Wang, Y., Zhou, G., Jin, J., Wang, B., Wang, X., Cichocki, A.: Multi-kernel extreme learning machine for EEG classification in brain-computer interfaces. Expert Syst. Appl. 96, 302–310 (2018). https://doi.org/10.1016/j.eswa.2017.12.015

    Article  Google Scholar 

  29. Latif, M.Y., Naeem, L., Hafeez, T., Raheel, A., Saeed, S.M.U., Awais, M., Alnowami, M., Anwar, S.M.: Brain computer interface based robotic arm control. In: 2017 International Smart Cities Conference ISC2, pp. 1–5 (2017). https://doi.org/10.1109/isc2.2017.8090870

  30. Hsu, W.-C., Lin, L.-F., Chou, C.-W., Hsiao, Y.-T., Liu, Y.-H.: EEG classification of imaginary lower limb stepping movements based on fuzzy support vector machine with kernel-induced membership function. Int. J. Fuzzy Syst. 19, 566–579 (2017). https://doi.org/10.1007/s40815-016-0259-9

    Article  MathSciNet  Google Scholar 

  31. Jung, J.-Y., Heo, W., Yang, H., Park, H.: A neural network-based gait phase classification method using sensors equipped on lower limb exoskeleton robots. Sensors 15, 27738–27759 (2015). https://doi.org/10.3390/s151127738

    Article  Google Scholar 

  32. Ahangi, A., Karamnejad, M., Mohammadi, N., Ebrahimpour, R., Bagheri, N.: Multiple classifier system for EEG signal classification with application to brain–computer interfaces. Neural Comput. Appl. 23, 1319–1327 (2013). https://doi.org/10.1007/s00521-012-1074-3

    Article  Google Scholar 

  33. Wolpaw, J., Wolpaw, E.W. (eds.): Brain-Computer Interfaces: Principles and Practice, 1st edn. Oxford University Press, Oxford, New York (2012)

    Google Scholar 

  34. Kapadia, N., Masani, K., Catharine Craven, B., Giangregorio, L.M., Hitzig, S.L., Richards, K., Popovic, M.R.: A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: effects on walking competency. J. Spinal Cord Med. 37, 511–524 (2014). https://doi.org/10.1179/2045772314y.0000000263

  35. Davies, L., Chappell, P., Melvin, T.: Modelling the effect of hydration on skin conductivity. Skin Res. Technol. Off. J. Int. Soc. Bioeng. Skin ISBS Int. Soc. Digit. Imaging Skin ISDIS Int. Soc. Skin Imaging ISSI 23, 363–368 (2017). https://doi.org/10.1111/srt.12344

  36. Lynch, C.L., Graham, G.M., Popovic, M.R.: A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool. J. Neural Eng. 8, 046034 (2011). https://doi.org/10.1088/1741-2560/8/4/046034

    Article  Google Scholar 

  37. Muro-de-la-Herran, A., Garcia-Zapirain, B., Mendez-Zorrilla, A.: Gait analysis methods: an overview of wearable and non-wearable systems. Highlighting Clin. Appl. Sens. 14, 3362–3394 (2014). https://doi.org/10.3390/s140203362

    Article  Google Scholar 

  38. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007). https://doi.org/10.1109/TBME.2007.901024

    Article  Google Scholar 

  39. Verleysen, M., François, D.: The curse of dimensionality in data mining and time series prediction. In: Cabestany, J., Prieto, A., Sandoval, F. (eds.) Computational Intelligence and Bioinspired Systems, pp. 758–770. Springer, Berlin Heidelberg (2005)

    Chapter  Google Scholar 

  40. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput. Electr. Eng. 40, 16–28 (2014). https://doi.org/10.1016/j.compeleceng.2013.11.024

    Article  Google Scholar 

  41. Dimitrakopoulos, G.N., Kakkos, I., Thakor, N.V., Bezerianos, A., Sun, Y.: A mental fatigue index based on regression using multiband EEG features with application in simulated driving. In: Conference Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3220–3223 (2017). https://doi.org/10.1109/embc.2017.8037542

  42. Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Lim, J., deSouza, J.J., Bezerianos, A., Sun, Y.: Task-independent mental workload classification based upon common multiband EEG cortical connectivity. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1940–1949 (2017). https://doi.org/10.1109/tnsre.2017.2701002

  43. Dotov, D.G., Bardy, B.G., Dalla Bella, S.: The role of environmental constraints in walking: effects of steering and sharp turns on gait dynamics. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep28374

  44. Klein, J., Spencer, S.J., Reinkensmeyer, D.J.: Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning. IEEE Trans. Neural Syst. Rehabil. Eng. 20, 268–275 (2012). https://doi.org/10.1109/TNSRE.2012.2195202

    Article  Google Scholar 

  45. Carbonaro, N., Mura, G.D., Lorussi, F., Paradiso, R., Rossi, D.D., Tognetti, A.: Exploiting wearable goniometer technology for motion sensing gloves. IEEE J. Biomed. Health Inform. 18, 1788–1795 (2014). https://doi.org/10.1109/JBHI.2014.2324293

    Article  Google Scholar 

  46. Vito, L.D., Postolache, O., Rapuano, S.: Measurements and sensors for motion tracking in motor rehabilitation. IEEE Instrum. Meas. Mag. 17, 30–38 (2014). https://doi.org/10.1109/MIM.2014.6825386

    Article  Google Scholar 

  47. Fleury, A., Sugar, M., Chau, T.: E-textiles in clinical rehabilitation: a scoping review. Electronics 4, 173–203 (2015). https://doi.org/10.3390/electronics4010173

    Article  Google Scholar 

  48. Lee, B.W., Lee, C., Kim, J., Lee, M.: Optimum conductive fabric sensor sites for evaluating the status of knee joint movements using bio-impedance. Biomed. Eng. Online 10, 48 (2011). https://doi.org/10.1186/1475-925X-10-48

    Article  Google Scholar 

  49. Postolache, O.: Physical rehabilitation assessment based on smart training equipment and mobile APPs. In: 2015 E-Health Bioengineering Conference (EHB), pp. 1–6 (2015). https://doi.org/10.1109/ehb.2015.7391530

  50. Song, Z., Guo, S.: Design process of exoskeleton rehabilitation device and implementation of bilateral upper limb motor movement. J. Med. Biol. Eng. 32, 323–330 (2011). https://doi.org/10.5405/jmbe.987

    Article  Google Scholar 

  51. Zhang, X., Xiang, Z., Lin, Q., Zhou, Q.: The design and development of a lower limbs rehabilitation exoskeleton suit. In: 2013 ICME International Conference on Complex Medical Engineering, pp. 307–312 (2013). https://doi.org/10.1109/iccme.2013.6548260

  52. Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T.: KinoHaptics: an automated, wearable, haptic assisted, physiotherapeutic system for post-surgery rehabilitation and self-care. J. Med. Syst. 40, 60 (2015). https://doi.org/10.1007/s10916-015-0391-3

    Article  Google Scholar 

  53. Polygerinos, P., Wang, Z., Galloway, K.C., Wood, R.J., Walsh, C.J.: Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. 73, 135–143 (2015). https://doi.org/10.1016/j.robot.2014.08.014

    Article  Google Scholar 

  54. Song, Z., Guo, S., Pang, M., Zhang, S., Xiao, N., Gao, B., Shi, L.: Implementation of resistance training using an upper-limb exoskeleton rehabilitation device for elbow joint. J. Med. Biol. Eng. 34, 188–196 (2014). https://doi.org/10.5405/jmbe.1337

    Article  Google Scholar 

  55. Miura, N., Watanabe, T., Sugimoto, S., Seki, K., Kanai, H.: Fuzzy FES controller using cycle-to-cycle control for repetitive movement training in motor rehabilitation. Experimental tests with wireless system. J. Med. Eng. Technol. 35, 314–321 (2011). https://doi.org/10.3109/03091902.2011.591480

  56. Kim, B., Kim, L., Kim, Y.-H., Yoo, S.K.: Cross-association analysis of EEG and EMG signals according to movement intention state. Cogn. Syst. Res. 44, 1–9 (2017). https://doi.org/10.1016/j.cogsys.2017.02.001

    Article  Google Scholar 

  57. Enders, H., Nigg, B.M.: Measuring human locomotor control using EMG and EEG: current knowledge, limitations and future considerations. Eur. J. Sport Sci. 16, 416–426 (2016). https://doi.org/10.1080/17461391.2015.1068869

    Article  Google Scholar 

  58. Chai, J., Chen, G., Thangavel, P., Dimitrakopoulos, G.N., Kakkos, I., Sun, Y., Dai, Z., Yu, H., Thakor, N., Bezerianos, A., Li, J.: Identification of gait-related brain activity using electroencephalographic signals. In: 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 548–551 (2017). https://doi.org/10.1109/ner.2017.8008410

  59. Shakeel, A., Navid, M.S., Anwar, M.N., Mazhar, S., Jochumsen, M., Niazi, I.K.: A review of techniques for detection of movement intention using movement-related cortical potentials. Comput. Math. Methods Med. (2015). https://doi.org/10.1155/2015/346217

    Article  Google Scholar 

  60. Ahmadian, P., Cagnoni, S., Ascari, L.: How capable is non-invasive EEG data of predicting the next movement? A mini review. Front. Hum. Neurosci. 7, 124 (2013). https://doi.org/10.3389/fnhum.2013.00124

    Article  Google Scholar 

  61. Schultze-Kraft, M., Birman, D., Rusconi, M., Allefeld, C., Görgen, K., Dähne, S., Blankertz, B., Haynes, J.-D.: The point of no return in vetoing self-initiated movements. Proc. Natl. Acad. Sci. U. S. A. 113, 1080–1085 (2016). https://doi.org/10.1073/pnas.1513569112

    Article  Google Scholar 

  62. Kato, Y.X., Yonemura, T., Samejima, K., Maeda, T., Ando, H.: Development of a BCI master switch based on single-trial detection of contingent negative variation related potentials. In: Conference Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4629–4632 (2011). https://doi.org/10.1109/iembs.2011.6091146

  63. Remsik, A., Young, B., Vermilyea, R., Kiekhoefer, L., Abrams, J., Evander Elmore, S., Schultz, P., Nair, V., Edwards, D., Williams, J., Prabhakaran, V.: A review of the progression and future implications of brain-computer interface therapies for restoration of distal upper extremity motor function after stroke. Expert Rev. Med. Devices. 13, 445–454 (2016). https://doi.org/10.1080/17434440.2016.1174572

  64. Ang, K.K., Chua, K.S.G., Phua, K.S., Wang, C., Chin, Z.Y., Kuah, C.W.K., Low, W., Guan, C.: A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clin. EEG Neurosci. 46, 310–320 (2015). https://doi.org/10.1177/1550059414522229

    Article  Google Scholar 

  65. López-Larraz, E., Trincado-Alonso, F., Rajasekaran, V., Pérez-Nombela, S., Del-Ama, A.J., Aranda, J., Minguez, J., Gil-Agudo, A., Montesano, L.: Control of an ambulatory exoskeleton with a brain-machine interface for spinal cord injury gait rehabilitation. Front. Neurosci. 10, 359 (2016). https://doi.org/10.3389/fnins.2016.00359

    Article  Google Scholar 

  66. Bhagat, N.A., Venkatakrishnan, A., Abibullaev, B., Artz, E.J., Yozbatiran, N., Blank, A.A., French, J., Karmonik, C., Grossman, R.G., O’Malley, M.K., Francisco, G.E., Contreras-Vidal, J.L.: Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front. Neurosci. 10, 122 (2016). https://doi.org/10.3389/fnins.2016.00122

    Article  Google Scholar 

  67. Jure, F.A., Carrere, L.C., Gentiletti, G.G., Tabernig, C.B.: BCI-FES system for neuro-rehabilitation of stroke patients. J. Phys: Conf. Ser. 705, 012058 (2016). https://doi.org/10.1088/1742-6596/705/1/012058

    Article  Google Scholar 

  68. Do, A.H., Wang, P.T., King, C.E., Abiri, A., Nenadic, Z.: Brain-computer interface controlled functional electrical stimulation system for ankle movement. J. Neuro. Eng. Rehabil. 8, 49 (2011). https://doi.org/10.1186/1743-0003-8-49

    Article  Google Scholar 

  69. Kim, T.-W., Lee, B.-H.: Clinical usefulness of brain-computer interface-controlled functional electrical stimulation for improving brain activity in children with spastic cerebral palsy: a pilot randomized controlled trial. J. Phys. Ther. Sci. 28, 2491–2494 (2016). https://doi.org/10.1589/jpts.28.2491

    Article  Google Scholar 

  70. Chung, E., Kim, J.-H., Park, D.-S., Lee, B.-H.: Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial. J. Phys. Ther. Sci. 27, 559–562 (2015). https://doi.org/10.1589/jpts.27.559

    Article  Google Scholar 

  71. Biasiucci, A., Leeb, R., Iturrate, I., Perdikis, S., Al-Khodairy, A., Corbet, T., Schnider, A., Schmidlin, T., Zhang, H., Bassolino, M., Viceic, D., Vuadens, P., Guggisberg, A.G., Millán, J.R.: Brain-actuated functional electrical stimulation elicits lasting arm motor recovery after stroke. Nat. Commun. 9, 2421 (2018). https://doi.org/10.1038/s41467-018-04673-z

  72. Aach, M., Cruciger, O., Sczesny-Kaiser, M., Höffken, O., Meindl, R.C., Tegenthoff, M., Schwenkreis, P., Sankai, Y., Schildhauer, T.A.: Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study, Spine. J. Off. J. North Am. Spine Soc. 14, 2847–2853 (2014). https://doi.org/10.1016/j.spinee.2014.03.042

    Article  Google Scholar 

  73. Ockenfeld, C., Tong, R.K.Y., Susanto, E.A., Ho, S.-K., Hu, X.: Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation. IEEE Int. Conf. Rehabil. Robot. Proc. 2013, 6650392 (2013). https://doi.org/10.1109/ICORR.2013.6650392

    Article  Google Scholar 

  74. Chen, M., Wu, B., Lou, X., Zhao, T., Li, J., Xu, Z., Hu, X., Zheng, X.: A self-adaptive foot-drop corrector using functional electrical stimulation (FES) modulated by tibialis anterior electromyography (EMG) dataset. Med. Eng. Phys. 35, 195–204 (2013). https://doi.org/10.1016/j.medengphy.2012.04.016

    Article  Google Scholar 

  75. Shindo, K., Fujiwara, T., Hara, J., Oba, H., Hotta, F., Tsuji, T., Hase, K., Liu, M.: Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial. Neurorehabil. Neural Repair 25, 830–837 (2011). https://doi.org/10.1177/1545968311408917

    Article  Google Scholar 

  76. Knutson, J.S., Harley, M.Y., Hisel, T.Z., Hogan, S.D., Maloney, M.M., Chae, J.: Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients. Neurorehabil. Neural Repair 26, 239–246 (2012). https://doi.org/10.1177/1545968311419301

    Article  Google Scholar 

  77. Loconsole, C., Leonardis, D., Barsotti, M., Solazzi, M., Frisoli, A., Bergamasco, M., Troncossi, M., Foumashi, M.M., Mazzotti, C., Castelli, V.P.: An emg-based robotic hand exoskeleton for bilateral training of grasp. In: 2013 World Haptics Conference (WHC), pp. 537–542 (2013). https://doi.org/10.1109/whc.2013.6548465

  78. Popović Maneski, L., Topalović, I., Jovičić, N., Dedijer, S., Konstantinović, L., Popović, D.B.: Stimulation map for control of functional grasp based on multi-channel EMG recordings. Med. Eng. Phys. 38, 1251–1259 (2016). https://doi.org/10.1016/j.medengphy.2016.06.004

  79. Liu, L., Chen, X., Lu, Z., Cao, S., Wu, D., Zhang, X.: Development of an EMG-ACC-based upper limb rehabilitation training system. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 244–253 (2017). https://doi.org/10.1109/TNSRE.2016.2560906

    Article  Google Scholar 

  80. Rincon, A.L., Yamasaki, H., Shimoda, S.: Design of a video game for rehabilitation using motion capture, EMG analysis and virtual reality. In: 2016 International Conference on Electronics, Communications and Computers CONIELECOMP, pp. 198–204 (2016). https://doi.org/10.1109/conielecomp.2016.7438575

  81. Sarasola-Sanz, A., Irastorza-Landa, N., Lopez-Larraz, E., Bibian, C., Helmhold, F., Broetz, D., Birbaumer, N., Ramos-Murguialday, A.: A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. IEEE Int. Conf. Rehabil. Robot. Proc. 2017, 895–900 (2017). https://doi.org/10.1109/ICORR.2017.8009362

    Article  Google Scholar 

  82. Rayegani, S.M., Raeissadat, S.A., Sedighipour, L., Rezazadeh, I.M., Bahrami, M.H., Eliaspour, D., Khosrawi, S.: Effect of neurofeedback and Electromyographic-biofeedback therapy on improving hand function in stroke patients. Top. Stroke Rehabil. 21, 137–151 (2014). https://doi.org/10.1310/tsr2102-137

    Article  Google Scholar 

  83. Grimaldi, G., Manto, M., Jdaoudi, Y.: Quality parameters for a multimodal EEG/EMG/kinematic brain-computer interface (BCI) aiming to suppress neurological tremor in upper limbs. F1000Research 2, 282 (2013). https://doi.org/10.12688/f1000research.2-282.v2

  84. Khushaba, R.N., Takruri, M., Miro, J.V., Kodagoda, S.: Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features. Neural Netw. 55, 42–58 (2014). https://doi.org/10.1016/j.neunet.2014.03.010

    Article  Google Scholar 

  85. Kyranou, I., Vijayakumar, S., Erden, M.S.: Causes of performance degradation in non-invasive electromyographic pattern recognition in upper limb prostheses. Front. Neurorobotics. 12 (2018). https://doi.org/10.3389/fnbot.2018.00058

  86. Dimyan, M.A., Cohen, L.G.: Neuroplasticity in the context of motor rehabilitation after stroke. Nat. Rev. Neurol. 7, 76–85 (2011). https://doi.org/10.1038/nrneurol.2010.200

    Article  Google Scholar 

  87. Levin, M.F., Kleim, J.A., Wolf, S.L.: What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319 (2009). https://doi.org/10.1177/1545968308328727

    Article  Google Scholar 

  88. Kakkos, I., Dimitrakopoulos, G.N., Gao, L., Zhang, Y., Qi, P., Matsopoulos, G.K., Thakor, N., Bezerianos, A., Sun, Y.: Mental workload drives different reorganizations of functional cortical connectivity between 2D and 3D simulated flight experiments. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 27, 1704–1713 (2019). https://doi.org/10.1109/tnsre.2019.2930082

  89. Dimitrakopoulos, G.N., Kakkos, I., Dai, Z., Wang, H., Sgarbas, K., Thakor, N., Bezerianos, A., Sun, Y.: Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 740–749 (2018). https://doi.org/10.1109/tnsre.2018.2791936

  90. EEG motor movement/imagery dataset, (n.d.). https://www.physionet.org/pn4/eegmmidb/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Kakkos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kakkos, I., Miloulis, ST., Gkiatis, K., Dimitrakopoulos, G.N., Matsopoulos, G.K. (2020). Human–Machine Interfaces for Motor Rehabilitation. In: Maglogiannis, I., Brahnam, S., Jain, L. (eds) Advanced Computational Intelligence in Healthcare-7. Studies in Computational Intelligence, vol 891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61114-2_1

Download citation

Publish with us

Policies and ethics