Abstract
A time series is a series of observations of a quantity of interest. Markov models are commonly used in applications to take into account the dependence between successive observations. This chapter describes the statistical analysis of different types of Markov models for categorical and continuous time series data, including hidden Markov models and state space models. Several examples are considered to illustrate how likelihood and Bayesian methods can be used for parameter estimation and prediction. Exercises are given at the end.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Baum, L. E., Petrie, T., Soules, G. & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164–171.
Carlin, B. P. & Polson, N. G. (1992). Monte Carlo Bayesian methods for discrete regression models and categorical time series. In J. M. Bernardo, J. O. Berger, A. Dawid & A. Smith (Eds.), Bayesian Statistics 4 (pp. 577–586). Oxford: Oxford University Press.
Chen, P.-L., Bernard, E. J. & Sen, P. K. (1999). A Markov chain model used in analyzing disease history applied to a stroke study. Journal of Applied Statistics, 26(4), 413–422.
Cox, D. R. (1981). Statistical analysis of time series. Some recent developments. Scandinavian Journal of Statistics, 8(2), 93–115.
Devroye, L. (1986). Non-uniform random variate generation. New York: Springer. Available at http://luc.devroye.org/rnbookindex.html.
Diggle, P. J. (1990). Time series: a biostatistical introduction. Oxford: Oxford University Press.
Diggle, P. J., Heagerty, P. J., Liang, K.-Y. & Zeger, S. L. (2002). Analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.
Grimmett, G., & Stirzaker, D. (2001). Probability and random processes (3rd ed.). Oxford: Oxford University Press.
Reynolds, P. S. (1994). Time-series analyses of beaver body temperatures. In N. Lange, L. Ryan, D. Billard, L. Brillinger, L. Conquest & J. Greenhouse (Eds.), Case studies in biometry (pp. 211–228). New York: Wiley. Chap. 11.
Shumway, R. H., & Stoffer, D. S. (2017). Time series analysis and its applications: with R examples (4th ed.). Cham: Springer International Publishing.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer-Verlag GmbH Germany, part of Springer Nature
About this chapter
Cite this chapter
Held, L., Sabanés Bové, D. (2020). Markov Models for Time Series Analysis. In: Likelihood and Bayesian Inference. Statistics for Biology and Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60792-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-662-60792-3_10
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-60791-6
Online ISBN: 978-3-662-60792-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)