Advertisement

Tierbasierte Bioökonomie

Chapter

Zusammenfassung

Nutztiere sind ein unverzichtbares Element der agrarischen Bioökonomie, indem sie nicht essbare Biomasse in hochwertige Lebensmittel transformieren und einen Großteil der darin enthaltenen Pflanzennährstoffe über Wirtschaftsdünger dem agrarischen Stoffkreislauf wieder zurückführen. Diese nicht essbare Biomasse macht den überwiegenden Anteil der gesamten agrarischen Biomasse aus und stammt von Grünland, Koppelprodukten lebensmittelliefernder Pflanzen (z. B. Stroh), Zwischenfrüchten im Zuge der Fruchtfolge sowie aus Nebenprodukten der industriellen Verarbeitung von pflanzlichen Verkaufsprodukten. Aber auch potenziell essbare Biomasse gelangt in die Nutztierfütterung. Sie ermöglicht insbesondere beim Geflügel eine hohe Effizienz der Transformation der Biomasse in hochwertiges Nahrungsprotein und ist mit einem geringeren Ressourcenverbrauch (Land, Wasser) und weniger umweltrelevanten Emissionen als bei Wiederkäuern (z. B. Rinder, Schafe) gekoppelt. Aufgrund der zunehmenden Verknappung der landwirtschaftlichen Nutzfläche wird diese Form der Nahrungskonkurrenz zwischen Menschen und Nutztiere jedoch künftig abnehmen müssen, während Wiederkäuer dank ihrer Fähigkeit zur Verwertung von nicht essbarer Biomasse trotz höherer umweltrelevanter Emission an Bedeutung gewinnen. Sofern nur die ohnehin verfügbare nicht essbare Biomasse verfüttert wird, entsteht dadurch kein nachteiliger Effekt auf den Verbrauch an Land, Wasser und anderen Ressourcen. Um die Nachteile in Bezug auf Transformationseffizienz und Emissionen zu minimieren, muss insbesondere der Futterwert der nicht essbaren agrarischen Biomasse stärker beachtet werden. Die Maßnahmen reichen von der Supplementierung limitierender Nährstoffe (z. B. Aminosäuren) über die Elimination antinutritiver Inhaltsstoffe bis zur züchterischen bzw. gentechnischen Verbesserung der Verdaulichkeit der nicht essbaren Komponenten von Nutzpflanzen.

Literatur

  1. Blümmel, M., Teymouri, F., Moore, J., Nielson, C., Videto, J., Kodukula, P., Pothu, S., Devulapalli, R., & Varijakshapnicker, P. (2018). Ammonia fiber expansion (AFEX) as spin of technology from 2nd generation biofuel for upgrading cereal straws and stovers for livestock feed. Animal Feed Science and Technology, 236, 178–186.CrossRefGoogle Scholar
  2. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D., & Schroeder, Julian I. (2019). Genetic strategies for improving crop yields. Nature, 575, 109–118.CrossRefGoogle Scholar
  3. Brugger, D., Buffler, M., Bolduan, C., Becker, C., Zhao, J., & Windisch, W. (2019). Effects of whole plant brown algae (Laminaria japonica) on zootechnical performance, apparent total tract digestibility, fecal characteristics and blood plasma urea in weaned piglets. Archives of Animal Nutrition. 10.1080/1745039X.2019.1672479.
  4. Bryan, B. A., Crossmann, N. D., Nolan, M., Li, J., Navarro, J., & Connor, J. D. (2015). Land use efficiency: anticipating future demand for land-sector greenhouse gas emissions abatement and managing trade-offs with agriculture, water, and biodiversity. Global Change Biology, 21(11), 4098–4114.CrossRefGoogle Scholar
  5. Dandikas, V., Heuwinkel, H., Lichti, F., Eckl, T., & Drewes, J. E. (2018). Correlation between hydrolysis rate constant and chemical composition of energy crops. Renewable Energy, 118, 34–42.CrossRefGoogle Scholar
  6. Diaz, O. (2019). Is it the agri-food-system adequated to our present needs? EC Nutrition, 14(1), 31–33.Google Scholar
  7. Duin, E. C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D. R., Duval, S., Rümbeli, R., Stemmler, R. T., Thauer, R. K., & Kindermann, M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. PNAS, 113(22), 6172–6177.CrossRefGoogle Scholar
  8. EFSA (European Food Safety Authority). (2015). Risk profile related to production and consumption of insects as food and feed. EFSA Journal.  https://doi.org/10.2903/j.efsa.2015.4257.CrossRefGoogle Scholar
  9. Ertl, P., Zebeli, Q., Zollitsch, W., & Knaus, W. (2015). Feeding of by-products completely replaced cereals and pulses in dairy cow and enhanced edible feed conversion ratio. Journal of Dairy Science, 98, 1225–1233.CrossRefGoogle Scholar
  10. FAO (Food and Agriculte Organization of the United Nations). (2013). Dietary Protein Quality Evaluation in Human Nutrition. FAO food and nutrition paper, 92. http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf. Zugegriffen: 2. Sept. 2019.
  11. FAO (Food and Agriculte Organization of the United Nations). (2018). The state of the world. 2018: The state of food security and nutrition in the world – Building climate resilience for food security and nutrition. http://www.fao.org/3/i9553en/i9553en.pdf. Zugegriffen: 2. Sept. 2019.
  12. FAO (Food and Agriculte Organization of the United Nations). (2019). The state of food security and nutrition in the world – Safeguarding against economic slowdowns and downturns. https://reliefweb.int/sites/reliefweb.int/files/resources/ca5162en.pdf. Zugegriffen: 2. Sept. 2019.
  13. Flachowsky, G. (1987). Stroh als Futtermittel (S. 255). Berlin: Landwirtschaftsverlag.Google Scholar
  14. Flachowsky, G. (2013). Animal nutrition with transgenic plants (S. 234). Wallingford and Boston: CAB International.CrossRefGoogle Scholar
  15. Flachowsky, G., & Kamphues, J. (2012). Carbon footprints for food of animal origin: What are the most preferable criteria to measure animal yields? Animals, 2(2), 108–126.CrossRefGoogle Scholar
  16. Flachowsky, G., & Meyer, U. (2015). Challenges for plant breeders from the view of animal nutrition. Agriculture, 5(4), 1252–1276.CrossRefGoogle Scholar
  17. Flachowsky, G., Meyer, U., & Südekum, K.-H. (2017). Land use for edible protein of animal origin – A review. Animals, 7(3), 1–19.Google Scholar
  18. Flachowsky, G., Südekum, K. H., & Meyer, U. (2019). Protein tierischer Herkunft: Gibt es Alternativen? Züchtungskunde, 91(3), 178–213.Google Scholar
  19. Flessa, H., Müller, D., Plassmann, K., Osterburg, B., Techen, A. K., Nitsch, H., Nieberg, H., Sanders, J., Olaf Meyer zu Hartlage, O., Beckmann, E., & Anspach, V. (2012). Studie zur Vorbereitung einer effizienten und gut abgestimmten Klimaschutzpolitik für den Agrarsektor. Landbauforschung vTI Agriculture and Forestry Research. ISBN 978–3-86576-087-6.Google Scholar
  20. Gonzalez-Ortiz, G., Bedford, M. R., Bach Knudsen, K. E., Courtin, C. M., & Classen, H. L. (2019). The value of fibre – Engaging the second brain for animal nutrition (S. 383). Wageningen: Wageningen Academic Publishers.CrossRefGoogle Scholar
  21. Grieve, B. D., Duckett, T., Collinson, M., Boyd, L., West, J., Yin, H., Arvin, F., & Pearson, S. (2019). The challenges posed by global broadacre crops in delivering smart agri-robotic solutions: A fundamental rethink is required. Global Food Security, 23, 116–124.CrossRefGoogle Scholar
  22. Hendriks, W. H., Verstegen, M. W. A., & Babinsky, L. (2019). Poultry and pig nutrition – Challenges of the 21th century (S. 424). Wageningen: Wageningen Academic Publishers.CrossRefGoogle Scholar
  23. HLPE (High Level Panel of Experts of the FAO). (2019). Agroecological and other innovative approaches for sustainable agriculture and food systems that enhance food security and nutrition. A report by the HLPE of the FAO, July 2019. http://www.fao.org/fileadmin/user_upload/hlpe/hlpe_documents/HLPE_Reports/HLPE-Report-14_EN.pdf. Zugegriffen: 2. Sept. 2019.
  24. IPCC (International Panel of Climate Change). (2006). IPCC guidelines for national greenhouse gas inventories. https://www.ipcc-nggip.iges.or.jp/public/2006gl/. Zugegriffen: 2. Sept. 2019.
  25. IPCC (International Panel of Climate Change). (2019). Climate change and land. approval plenary; 02.–06. August 2019. https://www.ipcc.ch/site/assets/uploads/2019/08/Fullreport-1.pdf. Zugegriffen: 9. Sept. 2019.
  26. Kerley, M. S., Fahey, G. C. jr., Berger, L. L., Gould, J. M., & Baker, F. L. (1985). Alkaline Hydrogen Peroxide Treatment Unlocks Energy in Agricultural By-Products. Science 15, 820–822.Google Scholar
  27. Kohlmüller, M., & Koch, T. (2019). Markt Bilanz – Vieh und Fleisch. In AMI (Agrarmarkt Informationsgesellschaft). Bonn: Medienhaus Plump GmbH & Agrarmarkt Informations-Gesellschaft mbH.Google Scholar
  28. Lesschen, J. P., van den Berg, M., Westhock, H. J., Witzke, H. P., & Oenema, O. (2011). Greenhouse gas emission profiles of European livestock sectors. Animal Feed Science and Technology, 166–167, 16–28.CrossRefGoogle Scholar
  29. Nationale Akademie der Wissenschaften Leopoldina, Deutsche Forschungsgemeinschaft & Union der deutschen Akademien der Wissenschaften. (2019). Wege zu einer wissenschaftlich begründeten, differenzierten Regulierung genomeditierter Pflanzen in der EU/Towards a scientifically justified, differentiated regulation of genome edited plants in the EU. Halle (Saale). https://www.leopoldina.org/uploads/tx_leopublication/2019_Stellungnahme_Genomeditierte_Pflanzen_web.pdf/. Zugegriffen: 6. Dez. 2019.
  30. Michl, S. C., Windisch, W., & Geist, J. (2014). Function of the crystalline style and first detection of laminarinase activity in freshwater mussels of genus Andota. Journal of Molluscan Studies, 80(2), 198–200.CrossRefGoogle Scholar
  31. Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food dabate. Global Food Security, 14, 1–8.CrossRefGoogle Scholar
  32. NASEM (National Academies of Sciences, Engineering and Medicine) (2016). Genetically Engineered Crops: Experiences and Prospects; Committee on Genetically Engineered Crops: Past Experience and Future Prospects, Board on Agriculture and Natural Resources; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine. Washington D.C.: The National Academies Press.Google Scholar
  33. Nie, Y., Avraamidon, S., Lie, J., Xiao, X., & Pistikopoulos, N. (2018). Land use modeling based on food – energy- water nexus: A case study on crop-livestock systems. Computer aided chemical engineering, 44, 1939–1944.CrossRefGoogle Scholar
  34. Niemann, H., Kuhla, B., & Flachowsky, G. (2011). Perspectives for feed-efficient animal production. Journal of Animal Science, 89(12), 4344–4363.CrossRefGoogle Scholar
  35. Nijdam, D., Rood, T., & Westhoek, H. (2012). The price of protein: Review of land use and carbon footprints from life cycle assessments of animal food products and their substitutes. Food Policy, 37(6), 760–770.CrossRefGoogle Scholar
  36. OECD/FAO. (2018). OECD-FAO agricultural outlook. OECD agriculture statistics (database). http://dx.doi.org/10.1787/agr-outl-data-en/. Zugegriffen: 06. Dezember 2019.
  37. Sajeev, E. P. M., Amon, B., Ammon, C., Zollitsch, W., & Winiwarter, W. (2018). Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis. Nutrient Cycling in Agroecosystems, 110, 161–175.CrossRefGoogle Scholar
  38. Schader, C., Muller, A., Scialabba, N. E., Hecht, J., Isensee, A., Erb, K. H., Smith, P., Makkar, H. P. S., Klocke, P., Leiber, F., Schwegler, P., Stolze, M., & Niggli, U. (2015). Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. Journal of the Royal Society, Interface, 12(113), 1–12.CrossRefGoogle Scholar
  39. Searchinger, T., Waite, R., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E. (2018). Creating a sustainable food future: A Menu of solutions to feed nearly 10 billion people by 2050. WRR (World Resources Report) Synthesis Report by the World Bank and the UN. https://wrr-food.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf. Zugegriffen: 03. Juni 2019.
  40. Smith, P. (2018). Managing the global land resource. Proceedings of the Royal Society B, 285(1874), 1–9.Google Scholar
  41. Sundstol, F., & Owen, E. (1984). Straw and other fibrous by-products as feed. Developments in animal and veterinary sciences 14 (S. 604). Oxford: Elsevier Amsterdam.Google Scholar
  42. Sunikumar, G., Campbell, L. M., Puckhaber, L., Stipanovic, R. D., & Rathore, K. S. (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. PNAS, 103(48), 18054–18059.CrossRefGoogle Scholar
  43. Tom, M. S., Fischbeck, P. S., & Hendrickson, C. T. (2016). Energy used, blue water footprint and greenhouse gas emissions for current food consumption patterns and dietary recommendations in the US. Environmental System Decisions, 36(1), 92–103.CrossRefGoogle Scholar
  44. Van Zantem, H. H. E., Mollenhorst, H., Klootwijk, C. W., van Middelaar, C. E., & de Boer, I. J. M. (2016). Global food supply: Land use efficiency of livestock systems. International Journal of Life Cycle Assessment, 21(5), 747–758.CrossRefGoogle Scholar
  45. Weigel, H.-J., & Manderscheid, R. (2012). Crop growth responses to free air CO2 enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat. European Journal of Agronomy, 43, 97–107.CrossRefGoogle Scholar
  46. Windisch, W., Fahn, C., Brugger, D., Deml, M., & Buffler, M. (2013). Strategien für eine nachhaltige Tierernährung. Züchtungskunde, 85(1), 40–53.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Department für TierwissenschaftenTechnischen Universität MünchenFreising-WeihenstephanDeutschland
  2. 2.Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI)BraunschweigDeutschland

Personalised recommendations