Skip to main content

Parametric Verification: An Introduction

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XIV

Abstract

This paper constitutes a short introduction to parametric verification of concurrent systems. It originates from two 1-day tutorial sessions held at the Petri nets conferences in Toruń (2016) and Zaragoza (2017). A video of the presentation is available at https://www.youtube.com/playlist?list=PL9SOLKoGjbeqNcdQVqFpUz7HYqD1fbFIg, consisting of 14 short sequences. The paper presents not only the basic formal concepts tackled in the video version, but also an extensive literature to provide the reader with further references covering the area.

We first introduce motivation behind parametric verification in general, and then focus on different models and approaches, for verifying several kinds of systems. They include Parametric Timed Automata, for modelling real-time systems, where the timing constraints are not necessarily known a priori. Similarly, Parametric Interval Markov Chains allow for modelling systems where probabilities of events occurrences are intervals with parametric bounds. Parametric Petri Nets allow for compact representation of systems, and cope with different types of parameters. Finally, Action Synthesis aims at enabling or disabling actions in a concurrent system to guarantee some of its properties. Some tools implementing these approaches were used during hands-on sessions at the tutorial. The corresponding practicals are freely available on the Web.

This work is partially supported by the ANR national research program PACS (ANR-14-CE28-0002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is a non-standard definition of traces (compared to e.g. [45]), but we keep this term as it is used in e.g. [9, 17].

  2. 2.

    This figure comes from [19], itself coming from an adaptation of a figure by Ulrich Kühne.

  3. 3.

    The names “\(\textsf {EF}\)”, “\(\textsf {AF}\)”, “\(\textsf {EG}\)” come from the TCTL syntax, and are consistent with the notations introduced in [50] and subsequently used in further papers (such as [12, 14]).

  4. 4.

    https://embedded.eecs.berkeley.edu/research/hytech/.

References

  1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2_22

    Chapter  Google Scholar 

  2. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Inf. Comput. 104(1), 2–34 (1993). https://doi.org/10.1006/inco.1993.1024

    Article  MathSciNet  MATH  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM, New York (1993). https://doi.org/10.1145/167088.167242

  5. André, É.: Parametric deadlock-freeness checking timed automata. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 469–478. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_27

    Chapter  Google Scholar 

  6. André, É.: A benchmark library for parametric timed model checking. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2018. CCIS, vol. 1008, pp. 75–83. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12988-0_5

    Chapter  Google Scholar 

  7. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 21(2), 203–219 (2019). https://doi.org/10.1007/s10009-017-0467-0

    Article  Google Scholar 

  8. André, É., Bloemen, V., Petrucci, L., van de Pol, J.: Minimal-time synthesis for parametric timed automata. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 211–228. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_12

    Chapter  Google Scholar 

  9. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905

    Article  MathSciNet  MATH  Google Scholar 

  10. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_6

    Chapter  Google Scholar 

  11. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty. In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10–20. IEEE CPS (2018). https://doi.org/10.1109/ICECCS2018.2018.00010

  12. André, É., Lime, D.: Liveness in L/U-parametric timed automata. In: Legay, A., Schneider, K. (eds.) ACSD, pp. 9–18. IEEE (2017). https://doi.org/10.1109/ACSD.2017.19

  13. André, É., Lime, D., Ramparison, M.: TCTL model checking lower/upper-bound parametric timed automata without invariants. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 37–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_3

    Chapter  MATH  Google Scholar 

  14. André, É., Lime, D., Roux, O.H.: Decision problems for parametric timed automata. In: Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 400–416. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47846-3_25

    Chapter  Google Scholar 

  15. André, É., Lipari, G., Nguyen, H.G., Sun, Y.: Reachability preservation based parameter synthesis for timed automata. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 50–65. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_5

    Chapter  Google Scholar 

  16. André, É., Liu, Y., Sun, J., Dong, J.S., Lin, S.-W.: PSyHCoS: parameter synthesis for hierarchical concurrent real-time systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 984–989. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_70

    Chapter  Google Scholar 

  17. André, É., Markey, N.: Language preservation problems in parametric timed automata. In: Sankaranarayanan, S., Vicario, E. (eds.) FORMATS 2015. LNCS, vol. 9268, pp. 27–43. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22975-1_3

    Chapter  MATH  Google Scholar 

  18. André, É., Nguyen, H.G., Petrucci, L., Sun, J.: Parametric model checking timed automata under non-zenoness assumption. In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 35–51. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_3

    Chapter  Google Scholar 

  19. André, É., Soulat, R.: The Inverse Method. FOCUS Series in Computer Engineering and Information Technology, ISTE Ltd and Wiley, 176 p. (2013)

    Google Scholar 

  20. Andreychenko, A., Magnin, M., Inoue, K.: Analyzing resilience properties in oscillatory biological systems using parametric model checking. Biosystems 149, 50–58 (2016). https://doi.org/10.1016/j.biosystems.2016.09.002. Selected Papers from the Computational Methods in Systems Biology 2015 Conference

    Article  Google Scholar 

  21. Aştefănoaei, L., Bensalem, S., Bozga, M., Cheng, C.-H., Ruess, H.: Compositional parameter synthesis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 60–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48989-6_4

    Chapter  Google Scholar 

  22. Bagnara, R., Hill, P.M., Zaffanella, E.: The parma polyhedra library: toward a complete set of numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput. Program. 72(1–2), 3–21 (2008). https://doi.org/10.1016/j.scico.2007.08.001

    Article  MathSciNet  Google Scholar 

  23. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_6

    Chapter  MATH  Google Scholar 

  24. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the expressiveness of timed automata and time petri nets. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 211–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11603009_17

    Chapter  MATH  Google Scholar 

  25. Bouyer, P., Markey, N., Sankur, O.: Robustness in timed automata. In: Abdulla, P.A., Potapov, I. (eds.) RP 2013. LNCS, vol. 8169, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41036-9_1

    Chapter  Google Scholar 

  26. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Methods Syst. Design 35(2), 121–151 (2009). https://doi.org/10.1007/s10703-009-0074-0

    Article  MATH  Google Scholar 

  27. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/TC.1986.1676819

    Article  MATH  Google Scholar 

  28. Bundala, D., Ouaknine, J.: Advances in parametric real-time reasoning. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 123–134. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44522-8_11

    Chapter  MATH  Google Scholar 

  29. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 10\(^{20}\) states and beyond. In: LICS, pp. 428–439. IEEE Computer Society (1990). https://doi.org/10.1109/LICS.1990.113767

  30. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Formal Methods Syst. Des. 34(1), 59–81 (2009). https://doi.org/10.1007/s10703-008-0061-x

    Article  MATH  Google Scholar 

  31. David, N.: Discrete parameters in Petri nets. Ph.D. thesis. University of Nantes, France (2017)

    Google Scholar 

  32. David, N., Jard, C., Lime, D., Roux, O.H.: Discrete parameters in Petri nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 137–156. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2_7

    Chapter  MATH  Google Scholar 

  33. David, N., Jard, C., Lime, D., Roux, O.H.: Coverability synthesis in parametric Petri nets. In: Meyer, R., Nestmann, U. (eds.) CONCUR. LIPIcs, Dagstuhl Publishing (2017). https://doi.org/10.4230/LIPIcs.CONCUR.2017.14

  34. Delahaye, B.: Consistency for parametric interval Markov chains. In: André, É., Frehse, G. (eds.) SynCoP. OASICS, vol. 44, pp. 17–32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015). https://doi.org/10.4230/OASIcs.SynCoP.2015.17

  35. Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski, A.: Consistency and refinement for interval Markov chains. J. Log. Algebr. Program. 81(3), 209–226 (2012). https://doi.org/10.1016/j.jlap.2011.10.003

    Article  MathSciNet  MATH  Google Scholar 

  36. Delahaye, B., Lime, D., Petrucci, L.: Parameter synthesis for parametric interval Markov chains. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol. 9583, pp. 372–390. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49122-5_18

    Chapter  Google Scholar 

  37. Demri, S.: On selective unboundedness of VASS. J. Comput. Syst. Sci. 79(5), 689–713 (2013). https://doi.org/10.1016/j.jcss.2013.01.014

    Article  MathSciNet  MATH  Google Scholar 

  38. Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric metric interval temporal logic. Theoret. Comput. Sci. 564, 131–148 (2015). https://doi.org/10.1016/j.tcs.2014.11.019

    Article  MathSciNet  MATH  Google Scholar 

  39. Doyen, L.: Robust parametric reachability for timed automata. Inf. Process. Lett. 102(5), 208–213 (2007). https://doi.org/10.1016/j.ipl.2006.11.018

    Article  MathSciNet  MATH  Google Scholar 

  40. Fanchon, L., Jacquemard, F.: Formal timing analysis of mixed music scores. In: ICMC. Michigan Publishing, August 2013

    Google Scholar 

  41. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008). https://doi.org/10.1007/s10009-007-0062-x

    Article  MATH  Google Scholar 

  42. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  43. Fribourg, L., Lesens, D., Moro, P., Soulat, R.: Robustness analysis for scheduling problems using the inverse method. In: Reynolds, M., Terenziani, P., Moszkowski, B. (eds.) TIME, pp. 73–80. IEEE Computer Society Press, September 2012. https://doi.org/10.1109/TIME.2012.10. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/FLMS-time12.pdf

  44. Geeraerts, G., Heußner, A., Praveen, M., Raskin, J.: \(\omega \)-Petri nets: algorithms and complexity. Fundamenta Informaticae 137(1), 29–60 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Glabbeek, R.J.: The linear time - branching time spectrum. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 278–297. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0039066

    Chapter  Google Scholar 

  46. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Int. J. Softw. Tools Technol. Transf. 1(1–2), 110–122 (1997). https://doi.org/10.1007/s100090050008

    Article  MATH  Google Scholar 

  47. Hoare, C.: Communicating Sequential Processes. International Series in Computer Science. Prentice-Hall, Upper Saddle River (1985)

    MATH  Google Scholar 

  48. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Log. Algebr. Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

    Article  MathSciNet  MATH  Google Scholar 

  49. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  50. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

    Article  Google Scholar 

  51. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

    Article  MathSciNet  MATH  Google Scholar 

  52. Knapik, M.: https://michalknapik.github.io/spatula

  53. Knapik, M., Meski, A., Penczek, W.: Action synthesis for branching time logic: theory and applications. ACM Trans. Embed. Comput. 14(4), 64 (2015). https://doi.org/10.1145/2746337

    Article  Google Scholar 

  54. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. Trans. Petri Nets Other Models Concurr. 5, 141–159 (2012). https://doi.org/10.1007/978-3-642-29072-5_6

    Article  MATH  Google Scholar 

  55. Knapik, M., Penczek, W.: Fixed-point methods in parametric model checking. In: Angelov, P., et al. (eds.) Intelligent Systems’2014. AISC, vol. 322, pp. 231–242. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-11313-5_22

    Chapter  Google Scholar 

  56. Li, J., Sun, J., Gao, B., André, É.: Classification-based parameter synthesis for parametric timed automata. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 243–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5_15

    Chapter  Google Scholar 

  57. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for Petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_6

    Chapter  Google Scholar 

  58. Luthmann, L., Stephan, A., Bürdek, J., Lochau, M.: Modeling and testing product lines with unbounded parametric real-time constraints. In: Cohen, M.B., et al. (eds.) SPLC, vol. A, pp. 104–113. ACM (2017). https://doi.org/10.1145/3106195.3106204

  59. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear hybrid automata. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 296–310. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_26

    Chapter  Google Scholar 

  60. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Upper Saddle River (1967)

    MATH  Google Scholar 

  61. Parquier, B., et al.: Applying parametric model-checking techniques for reusing real-time critical systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2016. CCIS, vol. 694, pp. 129–144. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53946-1_8

    Chapter  Google Scholar 

  62. Pecheur, C., Raimondi, F.: Symbolic model checking of logics with actions. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt 2006. LNCS (LNAI), vol. 4428, pp. 113–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74128-2_8

    Chapter  MATH  Google Scholar 

  63. Petrucci, L., van de Pol, J.: Parameter synthesis algorithms for parametric interval Markov chains. In: Baier, C., Caires, L. (eds.) FORTE 2018. LNCS, vol. 10854, pp. 121–140. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92612-4_7

    Chapter  Google Scholar 

  64. Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via ordered binary decision diagrams. J. Appl. Log. 5(2), 235–251 (2007). https://doi.org/10.1016/j.jal.2005.12.010

    Article  MathSciNet  MATH  Google Scholar 

  65. Sankur, O.: Symbolic quantitative robustness analysis of timed automata. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 484–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_48

    Chapter  MATH  Google Scholar 

  66. Seidner, C.: Vérification des EFFBDs: model checking en Ingénierie Système. (EFFBDs verification: model checking in systems engineering). Ph.D. thesis. University of Nantes, France (2009). https://tel.archives-ouvertes.fr/tel-00440677

  67. Somenzi, F.: CUDD: CU decision diagram package - release 2.5.0. https://github.com/ivmai/cudd

  68. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling and verifying hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng. Methodol. 22(1), 3:1–3:29 (2013). https://doi.org/10.1145/2430536.2430537

    Article  Google Scholar 

  69. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using parametric timed automata. In: Quinton, S., Vardanega, T. (eds.) WATERS, July 2015

    Google Scholar 

  70. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. J. Univ. Comput. Sci. 15(17), 3273–3304 (2009). https://doi.org/10.3217/jucs-015-17-3273

    Article  MathSciNet  MATH  Google Scholar 

  71. Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. Acta Informatica 21(6), 643–674 (1985). https://doi.org/10.1007/BF00289715

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laure Petrucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

André, É., Knapik, M., Lime, D., Penczek, W., Petrucci, L. (2019). Parametric Verification: An Introduction. In: Koutny, M., Pomello, L., Kristensen, L. (eds) Transactions on Petri Nets and Other Models of Concurrency XIV. Lecture Notes in Computer Science(), vol 11790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60651-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60651-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60650-6

  • Online ISBN: 978-3-662-60651-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics