Skip to main content

Zusammenfassung

Wasserstoff ist ein notwendiger Rohstoff in der Erzeugung von Ammoniak, für Hydrocracking sowie für die Herstellung von Methanol und Pharmazeutika und wird auch von Lebensmittel- und Metallindustrien benötigt. Nach dem Stand der Technik ist die Herstellung von Wasserstoff von der Verwendung fossiler Ausgangsstoffe und Energieträger abhängig und damit mit einer erheblichen CO2-Emission verbunden. Kapitel 3 beschreibt die derzeit eingesetzten Verfahren und benennt nachhaltigere Alternativen .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. US Department of Energy (2018) https://www.energy.gov/. Zugegriffen: 10. März 2018

  2. Rostrup-Nielsen JR (2000) New aspects of syngas production and use. Catal Today 63:159–164

    CAS  Google Scholar 

  3. da Silva Veras T, Mozer TS, da Costa Rubim Messeder dos Santos D, da Silva César A (2017) Hydrogen: trends, production and characterization of the main process worldwide. Int J Hydrogen Energy 42:2018–2033

    Google Scholar 

  4. Rafiqul I, Weber C, Lehmann B, Voss A (2005) Energy efficiency improvements in ammonia production – perspectives and uncertainties. Energy 30:2487–2504

    CAS  Google Scholar 

  5. Ball M, Wietschel M (2009) The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 34:615–627

    CAS  Google Scholar 

  6. Spallina V, Pandolfo D, Battistella A, Romano MC, van Sint Annaland M, Gallucci F (2016) Techno-economic assessment of membrane assisted fluidized bed reactors for pure H2 production with CO2 capture. Energy Convers Manag 120:257–273

    CAS  Google Scholar 

  7. Kinetics Technologies (2018) KT reformers. http://www.kt-met.com/en/business/hydrogen-syngas-technology. Zugegriffen: 10. März 2018

  8. McDermott (2018) Steam methane reformers. https://www.cbi.com/What-We-Do/Technology/Gas-Processing/Hydrogen-Synthesis-Gas-Production/Steam-Methane-Reformers. Zugegriffen: 10. März 2018

  9. Haldor Topsoe (2018) Tubular radiant wall steam reformer. https://www.topsoe.com/products/tubular-radiant-wall-steam-reformer. Zugegriffen: 10. März 2018

  10. Amec Foster Wheeler (2018) Terrace wall™ steam reformers. https://www.amecfw.com/products/fired-heaters/steam-reformers/terrace-wall-steam-reformers. Zugegriffen: 10. März 2018

  11. Ratnasamy C, Wagner JP (2009) Water gas shift catalysis. Catal Rev 51:325–440

    CAS  Google Scholar 

  12. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139:244–260

    CAS  Google Scholar 

  13. Armaroli N, Balzani V (2011) The hydrogen issue. Chemsuschem 4:21–36

    CAS  Google Scholar 

  14. Angeli SD, Monteleone G, Giaconia A, Lemonidou A (2014) State-of-the-art catalysts for CH4 steam reforming at low temperature. Int J Hydrogen Energy 39:1979–1997

    CAS  Google Scholar 

  15. Haldor Topsoe (2018) Autothermal reformer. https://www.topsoe.com/products/syncortm-autothermal-reformer-atr. Zugegriffen: 10. März 2018

  16. Johnson Matthey (2018) Reforming technologies (ATR, GHR, SMR). http://www.jmprotech.com/core-technologies-reforming-ATR-GHR-SMR. Zugegriffen: 10. März 2018

  17. Basini L, Aasberg-Petersen K, Guarinoni A, Østberg M (2001) Catalytic partial oxidation of natural gas at elevated pressure and low residence time. Catal Today 64:9–20

    CAS  Google Scholar 

  18. Basile F, Basini L, Amore MD, Fornasari G, Guarinoni A, Matteuzzi D, Piero GD, Trifirò F, Vaccari A (1998) Ni/Mg/Al anionic clay derived catalysts for the catalytic partial oxidation of methane: residence time dependence of the reactivity features. J Catal 173:247–256

    CAS  Google Scholar 

  19. BP (2017) BP statistical review of world energy 2017. http://www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf. Zugegriffen: 10. März 2018

  20. DOE/NETL (2018) Gasification systems. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/history-gasification. Zugegriffen: 10. März 2018

  21. Navarro RM, Peña MA, Fierro JLG (2007) Hydrogen production reactions from carbon feedstocks: fossil fuels and biomass. Chem Rev 107:3952–3991

    CAS  Google Scholar 

  22. Ûarnes I (2011) Next generation coal gasification technology. CCC/187, London, UK, IEA Clean Coal Centre, 1–49

    Google Scholar 

  23. Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass – a technology review from 1950 to 2009. Fuel 89:1763–1783

    CAS  Google Scholar 

  24. DOE/NETL (2018) Syngas contaminant removal and conditioning. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/cleanup. Zugegriffen: 10. März 2018

  25. DOE/NETL (2018) Acid gas removal. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/syngas. Zugegriffen: 10. März 2018

  26. DOE/NETL (2018) Shell gasifiers. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/shell. Zugegriffen: 10. März 2018

  27. Shell (2018) Shell gasification technology. https://www.shell.com/business-customers/global-solutions/gasification-licensing/coal-gasification.html. Zugegriffen: 10. März 2018

  28. DOE/NETL (2018) GE energy gasifier. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/ge. Zugegriffen: 10. März 2018

  29. DOE/NETL (2018) CB&I E-Gas™ gasifiers. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/egas. Zugegriffen: 10. März 2018

  30. DOE/NETL (2018) Siemens gasifiers. https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/siemens. Zugegriffen: 10. März 2018

  31. DOE/NETL (2018) KBR transport gasifiers, https://www.netl.doe.gov/research/coal/energy-systems/gasification/gasifipedia/kbr. Zugegriffen: 10. März 2018

  32. Air Liquide (2018) Lurgi FBDB™ gasifier. https://www.engineering-airliquide.com/lurgi-fbdb-fixed-bed-dry-bottom-gasification. Zugegriffen: 10. März 2018

  33. International Energy Agency Oil (2018) Öl. https://www.iea.org/about/faqs/oil/. Zugegriffen: 10. März 2018

  34. Rahimpour MR, Jafari M, Iranshahi D (2013) Progress in catalytic naphtha reforming process: a review. Appl Energy 109:79–93

    CAS  Google Scholar 

  35. Fraser S (2014) Distillation in refining. In: Górak A, Schoenmakers H (Hrsg) Distillation: operation and application. Elsevier, Amsterdam, S 155–190

    Google Scholar 

  36. EIA (2018) USA refinery hydrogen consumption. https://www.eia.gov/todayinenergy/detail.php?id=24612. Zugegriffen: 10. März 2018

  37. Honeywell UOP (2018) UOP CCR PlatformingTM Process. https://www.uop.com/processing-solutions/refining/gasoline/naphtha-reforming/. Zugegriffen: 10. März 2018

  38. Reliance (2018) Petroleum Refining & Marketing. http://www.ril.com/OurBusinesses/PetroleumRefiningAndMarketing.aspx. Zugegriffen: 10. März 2018

  39. BASF Singapore (2018) https://www.basf.com/sg/en.html. Zugegriffen: 10. März 2018

  40. ExxonMobil Jurong (2018) Singapore refinery. http://www.exxonmobil.com.sg/en-sg/company/business-and-operations/operations/singapore-refinery-overview. Zugegriffen: 10. März 2018

  41. Shell Jurong (2018) Shell Jurong island. https://www.shell.com.sg/about-us/projects-and-sites/shell-jurong-island.html. Zugegriffen: 10. März 2018

  42. Petrochemical Complex of Singapore (2018) Jurong island. http://www.pcs.com.sg/singapore-petrochemical-complex/jurong-island/. Zugegriffen: 10. März 2018

  43. Repsol (2018) Peru’s most important refinery: La Pampilla. https://www.repsol.energy/en/about-us/where-we-work/la-pampilla-refinery/index.cshtml. Zugegriffen: 10. März 2018

  44. Shell (2018) Shell martinez refinery. https://www.shell.us/about-us/projects-and-locations/martinez-refinery/about-shell-martinez-refinery.html. Zugegriffen: 10. März 2018

  45. IEA (2007) IEA energy technology essentials – biomass for power generation and CHP. High Temp 1–4

    Google Scholar 

  46. Balat H, Kirtay E (2010) Hydrogen from biomass – present scenario and future prospects. Int J Hydrogen Energy 35:7416–7426

    CAS  Google Scholar 

  47. Zhang L, Xu C, Champagne P (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers Manag 51:969–982

    CAS  Google Scholar 

  48. Molino A, Chianese S, Musmarra D (2016) Biomass gasification technology: the state of the art overview. J Energy Chem 25:10–25

    Google Scholar 

  49. Sikarwar VS, Zhao M, Clough P, Yao J, Zhong X, Memon MZ, Shah N, Anthony EJ, Fennell PS (2016) An overview of advances in biomass gasification. Energy Environ Sci 9:2939–2977

    CAS  Google Scholar 

  50. Holz Energy (2018) Gasifier. http://www.holzenergie-wegscheid.de/home.html. Zugegriffen: 10. März 2018

  51. Syncraft (2018) Gasifiers. http://syncraft.at/index.php/en/menu-products-en/menu-holzgaskraftwerk-en. Zugegriffen: 10. März 2018

  52. Prodesa (2018) https://prodesa.net/. Zugegriffen: 10. März 2018

  53. IEA Bioenergy/Task 33 (2018) Work scope, approach and industrial involvement. http://task33.ieabioenergy.com/content/taks_description. Zugegriffen: 10. März 2018

  54. Hrbek J (2016) Status report on thermal biomass gasification in countries participating in IEA Bioenergy Task 33. Statusbericht

    Google Scholar 

  55. Zeng K, Zhang D (2017) Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci 36:307–326

    Google Scholar 

  56. Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934

    CAS  Google Scholar 

  57. Shell (2017) Shell hydrogen study 2017. https://www.shell.com/energy-and-innovation/the-energy-future/future-transport/hydrogen/_jcr_content/par/textimage_1062121309.stream/1496312627865/46fec8302a3871b190fed35fa8c09e449f57bf73bdc35e0c8a34c8c5c53c5986/shell-h2-study-new.pdf. Zugegriffen: 10. März 2018

  58. McPhy (2018) Electrolyzers. http://mcphy.com/en/our-products-and-solutions/electrolyzers/. Zugegriffen: 10. März 2018

  59. Hydrogenics (2018) Electrolysis. http://www.hydrogenics.com/technology-resources/hydrogen-technology/electrolysis/. Zugegriffen: 10. März 2018

  60. Siemens (2018) Electrolyzer. http://www.industry.siemens.com/topics/global/en/pem-electrolyzer/silyzer/Documents/2017-04-Silyzer200-boschure-en.pdf. Zugegriffen: 10. März 2018

  61. Areva H2Gen (2018) AREVA H2Gen hydrogen generators. http://www.arevah2gen.com/en/products-services/hydrogen-generators. Zugegriffen: 10. März 2018

  62. ITM-Power (2018) HGas. http://www.itm-power.com/product/hgas. Zugegriffen: 10. März 2018

  63. ITM-Power (2018) Project with shell. http://www.itm-power.com/news-item/10mw-refinery-hydrogen-project-with-shell. Zugegriffen: 10. März 2018

  64. IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change

    Google Scholar 

  65. IPCC (2005) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, Cambridge

    Google Scholar 

  66. IEA (2010) Energy technology perspectives: scenarios and strategies to 2050. OECD/IEA, Paris

    Google Scholar 

  67. Medrano JA, Potdar I, Melendez J, Spallina V, Pacheco-Tanaka DA, van Sint Annaland M, Gallucci F (2018) The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: experimental demonstration and model validation. Appl Energy 215:75–86

    CAS  Google Scholar 

  68. Medrano JA, Spallina V, van Sint Annaland M, Gallucci F (2014) Thermodynamic analysis of a membrane-assisted chemical looping reforming reactor concept for combined H2 production and CO2 capture. Int J Hydrogen Energy 39:4725–4738

    CAS  Google Scholar 

  69. Rydén M, Lyngfelt A, Mattisson T (2006) Synthesis gas generation by chemical-looping reforming in a continuously operating laboratory reactor. Fuel 85:1631–1641

    Google Scholar 

  70. Tang M, Xu L, Fan M (2015) Progress in oxygen carrier development of methane-based chemical-looping reforming: a review. Appl Energy 151:143–156

    CAS  Google Scholar 

  71. Adanez J, Abad A, Garcia-Labiano F, Gayan P, de Diego LF (2012) Progress in chemical-looping combustion and reforming technologies. Prog Energy Combust Sci 38:215–282

    CAS  Google Scholar 

  72. Gallucci F, Fernandez E, Corengia P, van Sint Annaland M (2013) Recent advances on membranes and membrane reactors for hydrogen production. Chem Eng Sci 92:40–66

    CAS  Google Scholar 

  73. Gallucci F, Medrano JA, Fernandez E, Melendez J, van Sint Annaland M (2017) Advances on high temperature Pd-based membranes and membrane reactors for hydrogen purification and production. J Membr Sci Res 3:142–156

    Google Scholar 

  74. Fernandez E, Medrano JA, Melendez J, Parco M, van Sint Annaland M, Gallucci F, Pacheco Tanaka DA (2016) Preparation and characterization of metallic supported thin Pd-Ag membranes for high temperature hydrogen separation. Chem Eng J 305:182–190

    CAS  Google Scholar 

  75. Shirasaki Y, Yasuda I (2013) Membrane reactor for hydrogen production from natural gas at the Tokyo gas company: a case study. In: Basile A (Hrsg) Handbook of membrane reactors. Woodhead Publishing, Cambridge, S 487–507

    Google Scholar 

  76. Aloisi I, Jand N, Stendardo S, Foscolo PU (2016) Hydrogen by sorption enhanced methane reforming: a grain model to study the behavior of bi-functional sorbent-catalyst particles. Chem Eng Sci 149:22–34

    CAS  Google Scholar 

  77. Ugarte P, Durán P, Lasobras J, Soler J, Menéndez M, Herguido J (2017) Dry reforming of biogas in fluidized bed: process intensification. Int J Hydrogen Energy 42:13589–13597

    CAS  Google Scholar 

  78. Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sustain Energy Rev 45:710–744

    CAS  Google Scholar 

  79. Abdullah B, Abd Ghani NA, Vo DVN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185

    CAS  Google Scholar 

  80. Upham DC, Agarwal V, Khechfe A, Snodgrass ZR, Gordon MJ, Metiu H, McFarland EW (2017) Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 358:917–921

    CAS  Google Scholar 

  81. Abbas HF, Wan Daud WMA (2010) Hydrogen production by methane decomposition: a review. Int J Hydrogen Energy 35:1160–1190

    CAS  Google Scholar 

  82. Ashcroft AT, Cheetham AK, Green MLH, Vernon PDF (1991) Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352:225–226

    CAS  Google Scholar 

  83. Christian Enger B, Lødeng R, Holmen A (2008) A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal A Gen 346:1–27

    Google Scholar 

  84. Enerkem (2018) http://enerkem.com/. Zugegriffen: 10. März 2018

  85. Iaquaniello G, Centi G, Salladini A, Palo E (2017) Waste as a Source of Carbon for Methanol Production. In: Basile A, Dalena F (Hrsg) Methanol, Science and Engineering. Elsevier, Amsterdam, S 95–111

    Google Scholar 

  86. Kendall K (2017) Hydrogen Fuel Cells. In: Abraham MA (Hrsg) Encyclopedia of Sustainable Technology. Elsevier, Oxford, S 305–316

    Google Scholar 

  87. Eftekhari A, Fang B (2017) Electrochemical hydrogen storage: opportunities for fuel storage, batteries, fuel cells, and supercapacitors. Int J Hydrogen Energy 42:25143–25165

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Medrano, J.A., Palo, E., Gallucci, F. (2020). Konventionelle Verfahren zur Wasserstoffherstellung. In: Kircher, M., Schwarz, T. (eds) CO2 und CO – Nachhaltige Kohlenstoffquellen für die Kreislaufwirtschaft. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60649-0_3

Download citation

Publish with us

Policies and ethics