Skip to main content

Pedokraniale und kraniopedale myofasziale Ketten – Regulation von Körperhaltung und Bewegung

  • Chapter
  • First Online:
Sensomotorik und Schmerz
  • 3072 Accesses

Zusammenfassung

Über die Faszien als die alles durchdringende Körpermatrix und Grundlage der myofaszialen Ketten, über ihre Funktion als Verschiebeschicht, Kraftüberträger und bevorzugten Sensorstandort zu sprechen bedeutet immer, über Sensomotorik zu sprechen. Die Matrixbildung und der dichte Besatz an Nozi- und Mechanosensoren machen das Fasziensystem zum globalen Informationsnetzwerk für die Sensomotorik. Es ist für die Regulation der Körperhaltungen und Bewegungen essenziell. Entsprechend bestimmt der Zustand der Faszienmatrix, der auf Muskelaktivitäten angewiesen ist, auch die Qualität der Afferenzmuster zur Generierung der Kinästhetik, z. B. der Gangsensomotorik und aller posturalen Regulationen. Die zeitlich-räumlichen Informationsmuster werden durch die Biotensegrität geprägt. Atrophisch-degenerative „nozizeptive Gewebebedingungen“ bestimmen die Schmerzsituation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bernabei M, Maas H, van Dieën JH (2016) A lumped stiffness model of intermuscular and extramuscular myofascial pathways of force transmission. Biomech Model Mechanobiol 15(6):1747–1763 (Epub 18 May 2016)

    Article  Google Scholar 

  • Clark DJ, Christou EA, Ring SA, Williamson JB, Doty L (2014) Enhanced somatosensory feedback reduces prefrontal cortical activity during walking in older adults. J Gerontol A Biol Sci Med Sci 69(11):1422–1428. https://doi.org/10.1093/gerona/glu125 (Epub 11 Aug 2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Du BL, Li JN, Guo HM, Li S, Liu B (2017) The effect of functional mandibular shift on the muscle spindle systems in head-neck muscles and the related neurotransmitter histamine. J Craniofac Surg 28(6):1628–1634. https://doi.org/10.1097/scs.0000000000003912

    Article  PubMed  PubMed Central  Google Scholar 

  • Eriksson PO, Häggman-Henrikson B, Nordh E, Zafar H (2000) Co-ordinated mandibular and head-neck movements during rhythmic jaw activities in man. J Dent Res 79(6):1378–1384

    Article  CAS  Google Scholar 

  • Findley T, Chaudhry H, Dhar S (2015) Transmission of muscle force to fascia during exercise. J Bodyw Mov Ther 19(1):119–123. https://doi.org/10.1016/j.jbmt.2014.08.010 (Epub 3 Sep 2014)

    Article  PubMed  Google Scholar 

  • Grondin F, Hall T, von Piekartz H (2017) Does altered mandibular position and dental occlusion influence upper cervical movement: a cross-sectional study in asymptomatic people. Musculoskelet Sci Pract 27:85–90. https://doi.org/10.1016/j.math.2016.06.007 (Epub 15 Jun 2016)

    Article  PubMed  Google Scholar 

  • Ivanenko YP, Grasso R, Lacquaniti F (2000) Influence of leg muscle vibration on human walking. J Neurophysiol 84(4):1737–1747

    Article  CAS  Google Scholar 

  • Kantor E, Poupard L, Le Bozec S, Bouisset S (2001) Does body stability depend on postural chain mobility or stability area? Neurosci Lett 308(2):128–132

    Article  CAS  Google Scholar 

  • Kaur N, Bhanot K, Brody LT, Bridges J, Berry DC, Ode JJ (2014) Effects of lower extremity and trunk muscles recruitment on serratus anterior muscle activation in healthy male adults. Int J Sports Phys Ther 9(7):924–937

    PubMed  PubMed Central  Google Scholar 

  • Lord SR, Clark RD, Webster IW (1991) Postural stability and associated physiological factors in a population of aged persons. J Gerontol 46:M69–M76

    Google Scholar 

  • Louw S, Kappers AM, Koenderink JJ (2000) Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Exp Brain Res 132(3):369–374

    Article  CAS  Google Scholar 

  • Maas H, Sandercock TG (2010) Force transmission between synergistic skeletal muscles through connective tissue linkages. J Biomed Biotechnol 2010:575672. https://doi.org/10.1155/2010/575672 (Epub 12 Apr 2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • März K, Adler W, Matta RE, Wolf L, Wichmann M, Bergauer B (2017) Can different occlusal positions instantaneously impact spine and body posture? A pilot study using rasterstereography for a three-dimensional evaluation. J Orofac Orthop 78(3):221–232. https://doi.org/10.1007/s00056-016-0073-x (Epub 5 Dec 2016)

    Article  PubMed  Google Scholar 

  • Myers TW (1997a) The "anatomy trains". J Bodyw Mov Ther 1:91–101

    Google Scholar 

  • Myers TW (1997b) The "anatomy trains": part 2. J Bodyw Mov Ther 1:135–145

    Google Scholar 

  • Myers TW (2014) Anatomy trains – myofascial meridians for manual and movement therapists, 3. Aufl. Chruchill Livingstone Elesevier, Edinburgh

    Google Scholar 

  • Ohlendorf D, Seebach K, Hoerzer S, Nigg S, Kopp S (2014) The effects of a temporarily manipulated dental occlusion on the position of the spine: a comparison during standing and walking. Spine J 14(10):2384–2391. https://doi.org/10.1016/j.spinee.2014.01.045 (Epub 31 Jan 2014)

    Article  PubMed  Google Scholar 

  • Ohlendorf D, Himmelreich M, Mickel C, Groneberg DA, Kopp S (2015) Does a temporary leg length discrepancy have an influence on upper body posture and lower jaw position in competitive athletes? [Article in German] Sportverletz Sportschaden 29(3):157–163. https://doi.org/10.1055/s-0034-1399215 (Epub 22 Apr 2015)

  • Palluel E, Olivier I, Nougier V (2009) The lasting effects of spike insoles on postural control in the elderly. Behav Neurosci 123(5):1141–1147. https://doi.org/10.1037/a0017115

    Article  PubMed  Google Scholar 

  • Pavan PG, Stecco A, Stern R, Stecco C (2014) Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep 18(8):441. https://doi.org/10.1007/s11916-014-0441-4

    Article  PubMed  Google Scholar 

  • Pearson KG (1995) Proprioceptive regulation of locomotion. Curr Opin Neurobiol 5(6):786–791

    Article  CAS  Google Scholar 

  • Perry SD, McIlroy WE, Maki BE (2000) The role of plantar cutaneous mechanoreceptors in the control of compensatory stepping reactions evoked by unpredictable, multi-directional perturbation. Brain Res 877(2):401–406

    Article  CAS  Google Scholar 

  • Pham TQ, Hoshi T, Tanaka Y, Sano A (2017) Effect of 3D microstructure of dermal papillae on SED concentration at a mechanoreceptor location. PLoS One 12(12):e0189293. https://doi.org/10.1371/journal.pone.0189293 (eCollection 2017)

  • Sakaguchi K, Mehta NR, Abdallah EF, Forgione AG, Hirayama H, Kawasaki T, Yokoyama A (2007) Examination of the relationship between mandibular position and body posture. Cranio 25(4):237–249

    Article  Google Scholar 

  • Schleip R, Duerselen L, Vleeming A, Naylor IL, Lehmann-Horn F, Zorn A, Jaeger H, Klingler W (2012) Strain hardening of fascia: static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration. J Bodyw Mov Ther 16(1):94–100. https://doi.org/10.1016/j.jbmt.2011.09.003 (Epub 5 Dec 2011)

    Article  PubMed  Google Scholar 

  • Stecco A, Gilliar W, Hill R, Fullerton B, Stecco C (2013) The anatomical and functional relation between gluteus maximus and fascia lata. J Bodyw Mov Ther 17(4):512–517. https://doi.org/10.1016/j.jbmt.2013.04.004 (Epub 11 May 2013)

    Article  PubMed  Google Scholar 

  • Taguchi T, Hoheisel U, Mense S (2008) Dorsal horn neurons having input from low back structures in rats. Pain 138(1):119–129. https://doi.org/10.1016/j.pain.2007.11.015 (Epub 27 Dec 2007)

    Article  PubMed  Google Scholar 

  • Tittel K (2016) Beschreibende und funktionelle Anatomie des Menschen, 16. Aufl. Kiener, München

    Google Scholar 

  • Tittel K (1957) Beschreibende und funktionelle Anatomie. Deutscher Verlag der Wissenschaften, Berlin (Erstausgabe)

    Google Scholar 

  • Vulfsons S, Chervonenko S, Haddad M, Weisman MH, Lavi N, Dar G (2018) Decreased amplitude of surface electromyographic recordings of muscle activation along the posterior myofascial kinematic chain in subjects with chronic nonspecific low back pain compared to healthy subjects. J Back Musculoskelet Rehabil 31(4):785–793. https://doi.org/10.3233/bmr-160627

  • Weisman MH, Haddad M, Lavi N, Vulfsons S (2014) Surface electromyographic recordings after passive and active motion along the posterior myofascial kinematic chain in healthy male subjects. J Bodyw Mov Ther 18(3):452–461. https://doi.org/10.1016/j.jbmt.2013.12.007 (Epub 24 Dec 2013)

    Article  PubMed  Google Scholar 

  • Wilke J, Engeroff T, Nürnberger F, Vogt L, Banzer W (2016a) Anatomical study of the morphological continuity between iliotibial tract and the fibularis longus fascia. Surg Radiol Anat 38(3):349–352. https://doi.org/10.1007/s00276-015-1585-6 (Epub 2 Nov 2015)

    Article  PubMed  Google Scholar 

  • Willard FH, Vleeming A, Schuenke MD, Danneels L, Schleip R (2012) The thoracolumbar fascia: anatomy, function and clinical considerations. J Anat 221(6):507–536. https://doi.org/10.1111/j.1469-7580.2012.01511.x (Epub 27 May 2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaman A, Ozturk C, Huijing PA, Yucesoy CA (2013) Magnetic resonance imaging assessment of mechanical interactions between human lower leg muscles in vivo. J Biomech Eng 135(9):91003. https://doi.org/10.1115/1.4024573

    Article  PubMed  Google Scholar 

  • Ylitalo E, Mäenpää H, Piitulainen H (2018) P 093 – comparison of three bipedal tasks to quantify contribution of proprioception to postural stability in healhty children and adolescents. Gait Posture 65(Suppl 1):382–383. https://doi.org/10.1016/j.gaitpost.2018.07.027 (Epub 24 Jul 2018)

    Article  Google Scholar 

  • Yoshino K, Kawagishi S, Amano N (1998) Morphological characteristics of primary sensory and post-synaptic sympathetic neurones supplying the temporomandibular joint in the cat. Arch Oral Biol 43(9):679–686

    Article  CAS  Google Scholar 

  • Yucesoy CA, Maas H, Koopman BH, Grootenboer HJ, Huijing PA (2006) Mechanisms causing effects of muscle position on proximo-distal muscle force differences in extra-muscular myofascial force transmission. Med Eng Phys 28(3):214–226 (Epub 15 Aug 2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laube, W. (2020). Pedokraniale und kraniopedale myofasziale Ketten – Regulation von Körperhaltung und Bewegung. In: Sensomotorik und Schmerz. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60512-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60512-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60511-0

  • Online ISBN: 978-3-662-60512-7

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics