Skip to main content

Behandlungsgrundlagen

  • Chapter
  • First Online:
Book cover Peritoneale Adhäsionen
  • 601 Accesses

Zusammenfassung

Narben, Verklebungen und Adhäsionen sind Begriffe, die häufig in einem ähnlichen Kontext verwendet werden. Besonders für die manuelle Therapie ist es jedoch von großer Bedeutung, diese Strukturen zu unterscheiden und zu erkennen, warum sich peritoneale Adhäsionen, fasziale Verklebungen und Narben überhaupt so massiv auf den Körper auswirken. Gerade peritoneale Adhäsionen bleiben oft unentdeckt. Was das für die Therapie bedeutet, und inwieweit es möglich ist, diese Strukturen auch nach jahrelangem Bestehen noch zu verändern, wird in diesem Kapitel behandelt. Ein kurzer Abriss über Anatomie, Physiologie, Pathophysiologie und Gleiteigenschaften des Gewebes soll die Voraussetzung dafür schaffen, den Fokus bei der Behandlung mit dem Liedler-Konzept im besten Verständnis adäquat setzen zu können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abu-Hijleh M, Dharap AS, Harris PF (2014) Fascia superficialis. In: von Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 15–18

    Google Scholar 

  • Arung W, Meurisse M, Detry O (2011) Pathophysiology and prevention of postoperative peritoneal adhesions. World J Gastroenterol 17(41):4545–4553

    Article  PubMed  PubMed Central  Google Scholar 

  • Asmussen PD, Söllner B (2010) Die Prinzipien der Wundheilung, Bd. Sonderausgabe. Kammerlander, Embrach

    Google Scholar 

  • Atance J, Yost MJ, Carver W (2004) Influence of the extracellular matrix on the regulationof cardiac fibroblast behavior by mechanical stretch. J Cell Physiol 200:377–386

    Article  CAS  PubMed  Google Scholar 

  • van Baal JOAM, Van de Vijver KK, Niewland R, Van Noorden CJF et al (2016) The histophysiology and pathophysiology of the peritoneum. Tissue Cell 49:​95–105

    Google Scholar 

  • Balestrini JL, Biliar KL (2006) Equibiaxial cyclic stretch stimulates fibroblasts to rapidly remodel fibrin. J Biomech 39:2983–2990

    Article  PubMed  Google Scholar 

  • Betrán AP, Merialdi M, Lauer JA et al (2007) Rates of caesarean section: analysis of global, regional and national estimates. Paediatr Perinat Epidemiol 21(2):​98–113

    Google Scholar 

  • Bordoni B, Zanier E (2014) Clinical and symptomatological reflections: the fascial system. J Multidiscip Healthc 7:401–411

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouffard NA, Cutroneo K, Badger GJ et al (2008) Tissue stretch decreases soluble TGF-β1 and Type-1 procollagen in mouse subcutaneous connective tissue: evidence from ex vivo and in vivo models. J Cell Physiol 214(2):389–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breul R (2014) Die tiefen Faszien im Hals- und vorderen Rumpfbereich. In: von Schleip R, Findley TW, Chaltow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 33–38

    Google Scholar 

  • ten Broek RPG, Issa Y, van Santbrink EJP et al (2013) Burden of adhesions in abdominal and pelvic surgery: systemic review and met-analysis. BMJ 347:f5588

    Article  PubMed  PubMed Central  Google Scholar 

  • Brokelman WJA, Lensvelt M, Borel Rinkes IHM, Klinkenbijl JHG et al (2011) Peritoneal changes due to laparoscopic surgery. Surg Endosc 25:1–9

    Article  CAS  PubMed  Google Scholar 

  • Brüggmann D, Tschartchian G, Wallwiener M, Münstedt K et al (2010) Intra-abdominal adhesions definition, origin, significance in surgical practice, and treatment options. Dtsch Ärztebl int 107(44):769–775

    PubMed  PubMed Central  Google Scholar 

  • Burridge K, Guilluy C (2016) Focal adhesions, stress fibers and mechanical tension. Exp Cell Res 343:14–20

    Article  CAS  PubMed  Google Scholar 

  • Cao TV, Hicks MR, Standley PR (2013) In vitro biomechanical stain regulation of fibroblast wound healing. J Am Osteopath Assoc 113(11):806–818

    Article  PubMed  Google Scholar 

  • Cao TV, Hicks MR, Zein-Hammoud M et al (2014) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72–84

    Google Scholar 

  • Cao TV, Hicks MR, Zein-Hammoud M, Standley PR (2015) Duration and magnitude of myofascial release in 3-dimensional bioengineered tendons: effects on wound healing. J Am Osteopath Assoc 115(2):72–82

    Google Scholar 

  • Capella-Monsonís H, Kearns S, Kelly J (2019) Battling adhesions: from understanding to prevention. BMC Biomed Eng 1:5

    Article  PubMed  PubMed Central  Google Scholar 

  • Carano A, Siciliani G (1996) Effects of continuous and intermittend forces on human fibroblasts in vitro. Eur J Orthod 18(1):19–26

    Article  CAS  PubMed  Google Scholar 

  • Chamorro Comesaña A, del Pilar Suarez Vicente M, Ferreira TD et al (2017) Effect of myofascial induction therapy on post-c-section scars, more than one and a half years old. Pilot study. J Bodyw Mov Ther 21:197–204

    Article  PubMed  Google Scholar 

  • Cheatham ML (2009) abdominal compartment syndrome: pathophysiology and definitions. Scand J Trauma, Resusc Emerg Med 17(10). https://doi.org/10.1186/1757-7241-17-10

  • Chen CS, Mrksich M, Huang S, Whitesides GM et al (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  CAS  PubMed  Google Scholar 

  • Cheong YC, Laird SM, Shelton JB et al (2001) Peritoneal healing and adhesion formation/reformation. Hum Reprod Update 7(6):556–566

    Article  CAS  PubMed  Google Scholar 

  • Coccolini F, Ansaloni L, Manfredi R et al (2013) Peritoneal adhesion index (PAI): proposal of a score for the ‚ignored iceberg’ of medicine and surgery. World J Emerg Surg 8:1–6

    Article  PubMed  PubMed Central  Google Scholar 

  • Corona R, Verguts J, Schonman R (2011) Postoperative inflammation in the abdominal cavity increases adhesion formation in a laparoscopic mouse model. Fertil Steril 95(4):1224–1228

    Article  PubMed  Google Scholar 

  • Correa-Gallegos D, Jiang D, Christ S, Ramesh P, Ye H, Wannemacher J, Gopal SK, et al (2019) proposal of a score for the urgerya score for themeNature. https://doi.org/10.1038/s41586-019-1794-y

  • Cowman MK, Schmidt TA, Raghavan P, Stecco A (2015) Viscoelastic properties of hyaluronan in physiological conditions. F1000Research 4(655). https://doi.org/10.12688/f1000research.6885.1

  • Darby IA, Skalli O, Gabbiani G (1990) A-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Investig 63(1):21–29

    CAS  PubMed  Google Scholar 

  • Darby IA, Laverdet B, Bonté F (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301–311

    PubMed  PubMed Central  Google Scholar 

  • Deutzmann R, Bruckner P (2014) Extrazelluläre Matrix − Struktur und Funktion. In: von Heinrich P, Müller M, Graeve L (Hrsg) Löffler/Petrides Biochemie und Pathochemie. Springer-Lehrbuch. Springer, Berlin/Heidelberg, S 931–935

    Chapter  Google Scholar 

  • Deyo RA, Weinstein JN (2001) Low back pain. N Engl J Med 344(5):363–370

    Article  CAS  PubMed  Google Scholar 

  • DiZerega GS (2000) Peritoneum, peritoneal healing, and adhesion formation. Peritoneal surgery. Bd Peritoneal surgery. Springer, New York, S 3–37

    Google Scholar 

  • DiZerega GS, Campeau JD (2001) Peritoneal repair and post-surgical adhesion formation. Hum Reprod Update 7:547–555

    Article  CAS  PubMed  Google Scholar 

  • DiZerega GS, Rogers KE (1992) The peritoneum, Bd 1. Springer, New York, S 1–23

    Book  Google Scholar 

  • Dodd JG, Good MM, Nguyen TL, Grigg AI et al (2006) In vitro biophysical strain model for understanding mechanisms of osteopathic manipulative treatment. J Am Osteopath Assoc 106(3):157–166

    PubMed  Google Scholar 

  • Duron J-J (2007) Postoperative intraperitoneal adhesion pathophysiology. Assoc Coloproctology G B Irel 9(2):14–24

    Google Scholar 

  • Engler AJ, Shamik S, Lee Sweeney H, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689

    Article  CAS  PubMed  Google Scholar 

  • Fede C, Angelini A, Stern R, Macchi V et al (2018) Quantification of hyaluronan in human fasciae: variations with function and anatomical site. J Anat 233(4):​552–556. https://doi.org/10.1111/joa.12866

  • Fernández-de-las-Peñas C, Dommerholt J (2014) Myofascial trigger points: peripheral or central phenomenon? Curr Rheumatol Rep 16:395

    Article  PubMed  Google Scholar 

  • Ferron FR, Pedregosa AT, Garcia MR, Mata AF et al (2011) Presion intraabdominal y toracica en pacientes criticos con sospecha de hipertension intraabdominal. Med Int 35(5):274–279

    Google Scholar 

  • Fourie WJ (2014) Operationen und Narbenbildung. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 308–315

    Google Scholar 

  • Fuller RB (1961) Tensegrity. Portfolio Art News 4:112–127

    Google Scholar 

  • Gabbiani G (2003) The myofibroblast in woud healing and fibrocontractive dieseases. J Pathol 200(4):​500–503

    Google Scholar 

  • Gardel ML, Sabass B, Li J, Danuser G, Schwartz US, Waterman CM (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde flow speed. J Cell Biol 183:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  • Ghahiry A, Rezaei F, Khouzani RK, Ashrafinia M (2012) Comparative analysis of long-term outcomes of Misgav-Ladach technique cesarean section and traditional cesarean section. J Obstet Gynaecol Res 38(10):1235–1239

    Article  PubMed  Google Scholar 

  • Gold MS, Gebhart GF (2010) Nociceptor sensitization in pain pathogenesis. Nat Med 16(11):1.248–1.257

    Google Scholar 

  • Grinnell F (1994) Mini-review on the cellular mechanisms of disease. J Cell Biol 124:401–404

    Google Scholar 

  • Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269

    Article  CAS  PubMed  Google Scholar 

  • Guimberteau JC (2014) Das subkutane und epitendinöse Gewebe des multimikrovakuolären Gleitsystems. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 106–108

    Google Scholar 

  • Guimberteau JC, Armstrong C (2016) Faszien Architektur des menschlichen Fasziengewebes, 1. Aufl. KVM − Der Medizinverlag, Berlin

    Google Scholar 

  • Guimberteau JC, Bakhach J, Panconi B, Rouzaud S (2007) A fresh look at vascularized flexor tendon transfers: concept, technical aspects and results. J Plast Reconstr Aesthet Surg 60(7):793–810

    Article  CAS  PubMed  Google Scholar 

  • Guimberteau JC, Delage JP, Mcgrouther DA, Wong JKF (2010) The microvacuolar system: how connective tissue sliding works. J Hand Surg 35:614–622l. Abschn. 8

    Article  CAS  Google Scholar 

  • Hartmann C (2005) Das große Still-Kompendium, Bd 1, 2. Aufl. Jolandos, Unterwössen

    Google Scholar 

  • Healy JC, Reznek RH (1998) The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. Eur Radiol 8:886–900

    Article  CAS  PubMed  Google Scholar 

  • Helsmoortel J, Hirth T, Wührl P (2002) Lehrbuch der viszeralen Osteopathie Peritoneale Organe. GeorgThieme, Stuttgart

    Google Scholar 

  • von Heymann W, Stecco C (2016) Fasziale Dysfunktionen. Man Med 54:303–306. https://doi.org/10.1007/s00337-016-0172-1

    Article  Google Scholar 

  • Hinz B, Gabbiani G (2003a) Cell-matrix and cell-cell contacts of myofibroblasts: role in connective tissue remodeling. Thromb Haemost 90:993–1002

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Gabbiani G (2003b) Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol 14:538–546

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1009–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Prunotto M et al (2012) Review recent developments in myofibroblast biology paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijing PA (2014a) Kraftübertragung und Muskelmechanik. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 82–83

    Google Scholar 

  • Huijing PA (2014b) Myofasziale Kraftübertragung − Eine Einführung. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 84–88

    Google Scholar 

  • Huss S, Wentzel B (2015) Diaphragmen und die Zirkulation. Haug, Stuttgart

    Book  Google Scholar 

  • Hynes RO (2009) Extracellular matrix:not just pretty fibrils. Science 326(5957):1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (1997) Integrins, tensegrity, and mechanotransduction. Gravit Space Res 10:2

    Google Scholar 

  • Ingber DE (1998) The architecture of life. Sci Am 278(1):48–57

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2003a) Mechanobiology and diseased of mechanotransduction. Ann Med 35:1–14

    Article  Google Scholar 

  • Ingber DE (2003b) Tensegrity I. Cell structure and hierarchical systems biology. J Cell Sci 116:1157–1173

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2003c) Tensegrity II. How structural networks influence cellualr informaiton processing networks. J Cell Sci 116:1397–1408

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE (2006) Cellular mechanotransduction: putting all the pieces together again. FASEB J 20:815–827

    Article  CAS  Google Scholar 

  • Ingber DE (2008a) Tensegrity and mechanotransduction. J Bodyw Mov Ther 12:198–200

    Article  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (2008b) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97​(2–3):163–179

    Google Scholar 

  • Jungbauer S, Gao H, Spatz JP, Kemkemer R (2008) Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys J 95:3470–3478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawabata M, Shima N, Nishizono H (2014) Regular change in spontaneous preparative behaviour on intra-abdominal pressure and breathing during dynamic lifting. Eur J Appl Physiol 114:2233–2239

    Article  PubMed  Google Scholar 

  • Kjaer M, Langberg H, Bayer ML, Hansen M et al (2009) From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scand J Med Sci Sports 19:500–510

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Maxwell IZ, Heisterkamp A, Polte TR et al (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Science 90(10):3762–3773

    CAS  Google Scholar 

  • Kwei S, Stavrakis G, Masaya T, Judah Folkman M et al (2004) Early adaptive responses of the vascular wall during venous arterialization in mice. Am J Pathol 164(1):81–89

    Article  PubMed  PubMed Central  Google Scholar 

  • Lackner I (2017) The pathophysiology of postoperative peritoneal adhesions- osteopathy as a treatment option? Literaturstudie, DUK, Krems

    Google Scholar 

  • Lancerotto L, Stecco C, Macchi V, Porzionato A et al (2011) Layers of the abdominal wall: anatomical investigation of subcutaneaous tissue and superficial fascia. Surg Radiol Anat. https://doi.org/10.1007/s00276-010-0772-8

  • Langevin HM, Sherman KJ (2007) Pathophysiological model for chronic low back pain integrating connective tissue and nervous system mechanisms. Med Hypotheses 68:74–80

    Article  PubMed  Google Scholar 

  • Langevin HM, Cornbrooks C, Taatjes DJ (2004) Fibroblast form a body-wide cellular network. Histochem Cell Biol 122:7–15

    Article  CAS  PubMed  Google Scholar 

  • Langevin HM, Bouffard NA, Badger GJ, Iatridis JC, Howe AK (2005) Dynamic fibroblast cytoskeletal respose to subcutaneous tissue stretch ex vivo and in vivo. Am J Phys Cell Phys 288(C):747–756

    Article  CAS  Google Scholar 

  • Langevin HM, Stevens-Tuttle D, Fox JR, Badger GJ, Bouffard NA, Krag MH, Henry SM et al (2009) Ultrasound evidence of altered lumbar connective tissue structure in human subjects with chronic low back pain. BMC Musculoskeletal Disord 10(1):151

    Google Scholar 

  • Langevin, HM, Fox JR, Koptiuch C, Badger GJ et al (2011) Reduced thoracolumbar fascia shear strain in human chronic low back pain. BMC Musculoskeltal Disord 12(203):1–11

    Google Scholar 

  • Levin SM, Martin D-C (2012) Biotensegrity: the mechanics of fascia. Fascia e the tensional network of the human body. In: The Science and clinical applications in manual and movement therapy. Elsevier GmbH, Edinburgh, S 137–42

    Google Scholar 

  • Levin SM, Martin D-C (2014) Biotensegrität-die Faszienmechanik. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 101–105

    Google Scholar 

  • Liedler M (2017) Einfluss von postoperativen Adhäsionen nach Sektio auf chronischen Low Back Pain − eine Pilotstudie. Masterthese, DUK, Krems

    Google Scholar 

  • Liem T (2005) Kraniosakrale Osteopathie, 4. Aufl. Hippokrates, Stuttgart

    Google Scholar 

  • Liem T, Vogt R (2014) Intrakranialle und intraspinale Membranstrukturen. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 42–48

    Google Scholar 

  • Lindig P (1922) Über die Entstehung, Bedeutung und Behandlung von Adhäsionen im Beckenbauchraum. Klin Wochenzeitschrift 1(22):421–423

    Article  Google Scholar 

  • Mage G, Wattiez A, Canis M, Pouly JL et al (2000) Classification of adhesions. In: von DiZerega GS (Hrsg) Peritoneal surgery. Springer, New York, S 221–228

    Chapter  Google Scholar 

  • Margetts PJ, Bonniaud P (2003) In-depth review basis mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int 23:530–541

    Article  CAS  PubMed  Google Scholar 

  • Matteini P, Dei L, Carretti E, Volpi N et al (2009) Structural behavior of highly concentrated hyaluronan. Biomacromolecules 10:1516–1522

    Article  CAS  PubMed  Google Scholar 

  • McCombe D, Brown T, Slavin J, Morrison WA (2001) The histochemical structure of the deep fascia and its structural response to surgery. Journal of Hand Surgery 26B(2):89–97

    Article  Google Scholar 

  • McNeilly M, Banes AJ, Benjamin M, Ralphs JR (1996) Tendon cells in vivo form a three dimensional network of cell processes linked by gap junctions. J Anat 189:593–600

    PubMed  PubMed Central  Google Scholar 

  • Meert GF (2009) Das Becken aus osteopathischer Sicht, 3. Aufl. Urban & Fischer, München

    Google Scholar 

  • Meert GF (2014) Strömungsdynamik im Fasziengewebe. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 131–134

    Google Scholar 

  • Melichar B, Freedman RS (2002) Immunology of the peritoneal cavity: relevance for host-tumor relation. Int J Gynecol Cancer 12:3–17

    Article  CAS  PubMed  Google Scholar 

  • Menzies D, Ellis H (1990) Intestinal obstruction from adhesions − how big is the problem? Ann R Coll Surg Engl 72:60–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milanesi R, Aquino RC (2016) Intra-abdominal pressure: an integrative review. Einstein (Sao Paulo) 14(3):423–430

    Article  Google Scholar 

  • Molinas CR, Binda MM, Manavella GD, Koninckx PR (2010) Adhesion formation after laparoscopic surgery: what do we know about the role of the peritoneal environment? Facts Views Vis Obgyn 2(3):149–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muts R (2015) Behandlung der peritonealen Bewegungsflächen in Beziehung der abdominalen Organen. Masterclass Osteopathie gehalten auf der Osteopathische Behandlungskonzepte 12. Peritoneum, Wien

    Google Scholar 

  • Myers T (2014) Kraftübertragung über Anatomische Zuglinien. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 96–100

    Google Scholar 

  • Niedergethmann M, Post S (2014) Appendektomie offen. http://www.webop.de/appendektomie-offen-12/. Zugegriffen am 29.03.2016

  • Pados G, Venetis CA, Almaloglou K, Tarlatzis BC (2010) Prevention of intra-peritoneal adhesions in gynaecological surgery: theory and evidence. Reprod BioMed Online 21:290–303. https://doi.org/10.1016/j.rbmo.2010.04.021

    Article  CAS  PubMed  Google Scholar 

  • Paoletti S (2014) Zwerchfellartige Strukturen. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 49–53

    Google Scholar 

  • Park H, Hwang B, Kim Y (2015) The impact of the pelvis floor muscles in dynamic ventilation maneuvers. J PhysTherSci 27:3155–3157

    Google Scholar 

  • Passerieux E, Rossignol R, Letellier T, Delage JP (2007) Physical continuity of the perimysium from myofibers to tendons: involvement in lateral force transmission in skeletal muscle. J Struct Biol 159:19–28

    Article  CAS  PubMed  Google Scholar 

  • Pavan GP, Stecco A, Stern R, Stecco C (2014) Painful connections: densification versus fibrosis of fascia. Curr Pain Headache Rep 18(441):1–8

    Google Scholar 

  • Pischinger A (2010) Das System der Grundregulation. Neu herausgegeben von Heine H, 12. Aufl. Karl F. Haug, Stuttgart

    Google Scholar 

  • Plotnikov SV, Pasapera AM, Sabass B, Waterman CM (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527

    Article  CAS  PubMed  Google Scholar 

  • Purslow PP, Delage JP (2014) Allgemeine Anatomie der Muskelfaszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 4–8

    Google Scholar 

  • Raftery AT (1973) Regeneration of parietal and visceral peritoneum: a electron microscopical study. J Anat 115:375–392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raftery AT (1979) Regeneration of peritoneum: a fibrinolytic study. J Anat 129(3):659–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter P (2014) Myofasziale Ketten: Übersicht über die verschiedenen Modelle. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Urban & Fischer, München, S 89–95

    Google Scholar 

  • Rodríguez RM, del Río FG (2013) Mechanistic basis of manual therapy in myofascial injuries. Sonoelastographic evolution control. J Bodyw Mov Ther 17:221–234

    Google Scholar 

  • Rodrigues MA, Nahas FX, Gomes HC, Masako Ferreira L (2013) Ventilatory function and intra-abdominal pressure in patients who underwent abdominoplasty with plication of the external oblique aponeurosis. Aesthet Plast Surg 37(5):993–999

    Article  Google Scholar 

  • Roman M, Chaudhry H, Bukiet B, Stecco A et al (2013) Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J Am Osteopath Assoc 113(8):600–610

    Article  PubMed  Google Scholar 

  • Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO (2016) Control of myofibroblast differentiationand function by cytoskeletal signaling. Biochem Mosc 81(13):1698–1708

    Article  CAS  Google Scholar 

  • Sandhouse (2011) Glossary of osteopathic terminology. American Association of Collegues of Osteopathic Medicine

    Google Scholar 

  • Schilder A, Hoheisel U, Magerl W, Benrath J et al (2014) Sensory findings after stimulation of the thoracolumbar fascia with hypertonic saline suggest its contribution to low back pain. Pain 155:222–231

    Article  PubMed  Google Scholar 

  • Schleip R (2003a) Fascial plasticity − a new neurobiological explanation, part 1. J Bodyw Mov Ther 7(1):11–19

    Article  Google Scholar 

  • Schleip R (2003b) Fascial plasticity − a new neurobiological explanation, part 2. J Bodyw Mov Ther 7(2):104–116

    Article  Google Scholar 

  • Schleip R (2016) Mechanotransduktion: von der zellulären Ebene bis zum ganzen Körper. Osteopathische Medizin 3:16–21

    Article  Google Scholar 

  • Schleip R, Klingler W, Lehmann-Horn F (2005) Active fascial contractility: fascia may be able to contract in a smooth-like manner und thereby musculoskeletal dynamics. Med Hypotheses 65:273–277

    Article  CAS  PubMed  Google Scholar 

  • Schleip R, Jäger H, Klingler W (2014) Die Faszie lebt: wie Faszientonus und -struktur von Zellen moduliert werden. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 115–120

    Google Scholar 

  • Schmitt VH (2016) Literaturdiskussion. In: von Schmitt VH (Hrsg) Die Biokompatibilität peritonealer Adhäsionsbarrieren. Springer Fachmedien Wiesbaden, Wiesbaden

    Chapter  Google Scholar 

  • Schünke M, Schulte E, Schumacher U, Voll M, Wesker K (2015) Prometheus – Innere Organe, 4. Aufl., Innere Organe. Thieme, Stuttgart

    Google Scholar 

  • Schünke M, Vleeming A, Van Hoof T, Willard FH (2012) A description of the lumbar interfascial triangel and its relation with the lateral raphe:anatomical constituents of load transfer through the lateral margin of the thoracolumbar fascia. J Anat 221:568–576

    Article  Google Scholar 

  • Schwarz US, Balaban NQ, Riveline D, Bershadsky A et al (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 38:1380–1394

    Article  Google Scholar 

  • Standley PR, Meltzer KR (2008) In vitro modeling of repetive motion strain and manual medicine treatments: potential roles for pro- and anti-inflammatory cytocines. J Bodyw Mov Ther 12:201–203

    Article  PubMed  PubMed Central  Google Scholar 

  • Stecco A, Meneghini A, Stern R, Stecco C (2014) Ultrasonography in myofascial neck pain: randomized clinical trial for diagnosis and follow-up. Surg Radiol Anat 36:243–253

    Article  PubMed  Google Scholar 

  • Stecco C, Pavan PG, Porzionato A, Macchi V et al (2009) Mechanics of crural fascia: from anatomy to sonstitutive modelling. Surg Radiol Anat 31:523–529. https://doi.org/10.1007/s00276-009-0474-2

    Article  PubMed  Google Scholar 

  • Stecco C, Stern R, Porzionato A, Macchi V, Masiero S et al (2011) Hyaluron within fascia in the etiology of myofascial pain. Surg Radiol Anat 33:891–896. https://doi.org/10.1007/s00276-011-0876-9

    Article  PubMed  Google Scholar 

  • Stecco C, Stecco A (2014) Die tiefe Faszie der unteren Extremität. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 23–26

    Google Scholar 

  • Stecco C, Fede C, Macchi V, Porzionato A et al (2018) The fasciacytes: a new cell devoted to fascial gliding regulation. Clin Anat. https://doi.org/10.1002/ca.23072

  • Stoltz J, Dumas D, Wang X, Payan E et al (2000) Influence of mechanical forces on cells and tissues. Biorheology 37:3–14

    CAS  PubMed  Google Scholar 

  • Stout AL, Steege JF, Dodson WJ, Hughes CL (1991) Relationship of laparoscopic findings to self-report of pelvic pain. Am Obstet Gynecol 164(1):73–79

    Article  CAS  Google Scholar 

  • Struller F, Weinreich F-J, Horvath P, Kokkalis M-K, Beckert S et al (2017) Peritoneal innervation: embryology and functional anatomy. Pleura Peritoneum 2(4):153–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Swanson RL (2013) Biotensegrity: a unifying theory of biological architecture with applications to osteopathic practice, education, and research – a review and analysis. J Am Osteopath Assoc 113(1):34–52

    Article  PubMed  Google Scholar 

  • Temple-Wong MM, Ren S, Quach P, Hansen BC et al (2016) Hyaluronan concentration and size distribution in human knee synovial fluid: variations with age and cartilage degeneration. Arthr Res Ther 18(1):18

    Google Scholar 

  • Tesarz J, Hoheisel U, Wiedenhofer B, Mense S (2011) Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience 194:302–308

    Article  CAS  PubMed  Google Scholar 

  • Threlkeld AJ (1992) The effects of manual therapy on connective tissue. J Am Phys Ther Assoc 72:893–902

    CAS  Google Scholar 

  • Tomasek JJ, Haaksma CJ, Eddy RJ, Vaughan MB (1992) Fibroblast contraction occurs on release of tension in attached collagen lattices: dependency on an organized actin cytoskeleton and serum. Anat Rec 232:359–368

    Article  CAS  PubMed  Google Scholar 

  • Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C et al (2002) Myofibroblasts and mechanoregulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363

    Article  CAS  PubMed  Google Scholar 

  • Tozzi P (2015a) A unifying neuro-fasciagenic model of somatic dysfunction − Underlying mechanism and treatment, Part I. J Bodyw Mov Ther 19:310–326

    Article  PubMed  Google Scholar 

  • Tozzi P (2015b) A unifying neuro-fasciagenic model of somatic dysfunction − Underlying mechanism and treatment, Part II. J Bodyw Mov Ther 19:526–543

    Article  PubMed  Google Scholar 

  • Tozzi P, Bongiorno D, Vitturini C (2011) Fascial release effects on patients with non-specific cervical or lumbar pain. J Bodyw Mov Ther 15(4):405–416

    Article  PubMed  Google Scholar 

  • Tozzi P, Bongiorno D, Vitturini C (2012) Low back pain and kidney mobility: local osteopathic fascial manipulation decreases pain perception and improves renal mobility. J Bodyw Mov Ther 16(3):381–391. https://doi.org/10.1016/j.jbmt.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  • Trindade VL, Martins PA, Santos S, Parente MP et al (2012) Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech 45:199–201

    Article  CAS  PubMed  Google Scholar 

  • Van den Berg F (2014a) Die Extrazellulärmatrix. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 121–125

    Google Scholar 

  • Van den Berg F (2014b) Die Physiologie der Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 110–114

    Google Scholar 

  • Van der Wal J (2009) The architecture of the connective tissue in the musculoskeletal system – an often overlooked functional parameter as to propioception in the locomotor apparatus. Int J Thera Massage Bodyw 2(4):9–23

    Google Scholar 

  • Wang N, Tolic-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, Stamenovic D (2002) Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells. Am J Physiol Cell Physiol 282(3):C606–C616

    Google Scholar 

  • Wang H-Q, Wei Y-Y, Wu Z-X, Luo Z-J (2009) Impact of leg lengthening on viscoelastic properties of the deep fascia. BMC Musculoskeltal Disorders 10:105

    Article  Google Scholar 

  • Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytosceleton. Science 216:1124–1127

    Article  Google Scholar 

  • Weibel M-A, Majno G (1973) Peritoneal adhesions and their relation to abdominal surgery: a postmortem study. Am J Surg 126(3):345–353

    Article  CAS  PubMed  Google Scholar 

  • Wight TN, Potter-Perigo S (2011) The extracellular matrix: an active or passive player in fibrosis? Am J Physiol Gastrointest Liver Physiol 301(6):G950–G955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willard FH (2014a) Die somatische Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 9–14

    Google Scholar 

  • Willard FH (2014b) Die viszerale Faszie. In: von Schleip R, Findely TW, Chaitow L, Huijing PA (Hrsg) Lehrbuch Faszien, 1. Aufl. Elsevier GmbH, München, S 39–41

    Google Scholar 

  • Wiseman DM, Trout JR, Diamond MP (1998) The rates of adhesion development and the effects of crystalloid solutions on adhesion development in pelvic surgery. Fertil Steril 70(4):702–711

    Article  CAS  PubMed  Google Scholar 

  • Wurn BF, Wurn LJ, King R, Heuer MA et al (2004a) Treating female infertility and improving ivf pregnancy rates with a manual physical therapy technique. Medscape Gen Med 6(2):51

    Google Scholar 

  • Wurn LJ, Wurn BF, Roscow AS, King R et al (2004b) Increasing orgasm and decreasing dyspareunia by a manual physical therapy technique. Medscape Gen Med 6(4):47

    Google Scholar 

  • Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214(2):199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Rivkind A, Pappo O, Pikarsky A, Levi-Schaffer F (2002) Role of mast cells and myofibroblasts in human peritoneal adhesion formation. Ann Surg 236(5):593–601

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liedler, M. (2020). Behandlungsgrundlagen. In: Peritoneale Adhäsionen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60500-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60500-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60499-1

  • Online ISBN: 978-3-662-60500-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics