Skip to main content

Temperate Waldzone

  • Chapter
  • First Online:
  • 9564 Accesses

Zusammenfassung

Die mittleren Breiten zwischen etwa 35 und 60° Nord bzw. Süd liegen im Einflussbereich der außertropischen Westwindzonen und werden von kühl-gemäßigten (nemoralen) Klimaten geprägt. Diese Regionen fasst man auch zur temperaten Zone zusammen. Thermische Kennzeichen sind der ausgeprägte Jahreszeitenwechsel mit einer mehr oder weniger ausgeprägten Winterruhe der Vegetation, eine Vegetationsperiodenlänge von 5 bis 7 Monaten (wenn monatliche Mitteltemperaturen >10 °C als Kriterium verwendet werden), Maximaltemperaturen, die nur selten 30 °C übersteigen, und mäßige bis starke Fröste in bis zu 6 Monaten. In wintermilden ozeanischen Gebieten der temperaten Zone können immergrüne Laub- und Nadelwälder sogar mehr als 250 Tage im Jahr für den Stoffgewinn nutzen. Die temperate Zone genießt einen jährlichen Strahlungsinput von 2500 bis 6000 MJ m−2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Aguade D, Poyatos R, Gomez M, Oliva J, Martínez-Vilalta J (2015) The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.). Tree Physiol 35:229–242

    CAS  Google Scholar 

  • Ahmed M, Anchukaitis KJ, Asrat A et al (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346

    CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the response of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant, Cell Environ 30:258–270

    CAS  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Google Scholar 

  • Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6 (article 129):1–55

    Google Scholar 

  • Allen RB, Bellingham PJ, Holdaway RJ, Wiser SK (2013) New Zealand’s indigenous forests and shrublands. In: Dymond JR (Hrsg) Ecosystem services in New Zealand – conditions and trends. Manaaki Whenua Press, Lincoln, S 34–48

    Google Scholar 

  • Amano T, Smithers RJ, Sparks TH, Sutherland WJ (2010) A 250-year index of first flowering dates and its response to temperature changes. Proc Roy Soc B 277:2451–2457

    Google Scholar 

  • Amano T, Freckleton RP, Queenborough SA, Doxford SW, Smithers RJ, Sparks TH, Sutherland WJ (2014) Links between plant species’ spatial and temporal response to a warming climate. Proc Roy Soc B 281(20133017):1–9

    Google Scholar 

  • Amiro BD, Barr AG, Barr JG et al (2010) Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res 115 (G00K02):1–13

    Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36

    Google Scholar 

  • Anderegg WRL, Hicke JA, Fisher RA et al (2015) Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol 208:674–683

    Google Scholar 

  • Aono Y, Kazui K (2008) Phenological data series of cherry tree flowering in Kyoto, Japan, and its application to reconstruction of springtime temperatures since the 9th century. Int J Clim 28:905–914

    Google Scholar 

  • Aranda I, Gil-Pelegrin E, Gasco A et al (2012) Drought response of forest trees: from the species to the gene. In: Aroca R (Hrsg) Plant responses to drought stress. Springer, Heidelberg, S 293–333

    Google Scholar 

  • Arend M, Braun S, Buttler A, Siegwolf RTW, Signarbieux C, Körner C (2016) Ökophysiologie: Reaktionen von Waldbäumen auf Klimaänderungen. In: Pluess AR, Augustin S, Brang P (Hrsg) Wald im Klimawandel. Grundlagen und Adaptationsstrategien. Haupt, Bern, S 77–91

    Google Scholar 

  • Auge H, Brandl R (1997) Seedling recruitment in the invasive clonal shrub Mahonia aquifolium Pursh (Nutt.). Oecologia 110:205–211

    Google Scholar 

  • Augspurger CK (2013) Reconstructing patterns of temperature, phenology, and frost damage over 124 years: spring damage risk is increasing. Ecology 94:41–50

    Google Scholar 

  • Bader MK-F, Leuzinger S, Keel SG, Siegwolf RT, Hagedorn F, Schleppi P, Körner C (2013) Central European hardwood trees in a high-CO2 future: synthesis of an 8-year forest canopy CO2 enrichment project. J Ecol 101:1509–1519

    CAS  Google Scholar 

  • Balanzategui D, Knorr A, Heussner K-U, Wazny T, Beck W, Słowiński M, Helle G, Buras A, Wilmking M, Van der Maaten E, Scharnweber T, Dorado-Liñán I, Heinrich I (2017) An 810-year history of cold season temperature variability for northern Poland. Boreas 47:443–453

    Google Scholar 

  • Baldocchi C, Wong S (2008) Accumulated winter chill is decreasing in the fruit growing regions of California. Clim Change 87:153–166

    Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224

    CAS  Google Scholar 

  • Beckage B, Osorne B, Gavin DG, Pucko C, Siccama T, Perkins T (2008) A rapid upward shift of a forest ecotone during 40 years of warming in the green mountains of Vermont. Proc Natl Acad Sci USA 105:4197–4202

    CAS  Google Scholar 

  • Becker P, Jacob D, Deutschländer T et al (2012) Klimawandel in Deutschand. In: Moosbrugger V, Brasseur G, Schaller M, Stribrny B (Hrsg) Klimawandel und Biodiversität – Folgen für Deutschland. Wissenschaftliche Buchgesellschaft, Darmstadt, S 23–37

    Google Scholar 

  • Bednorz E (2011) Synoptic conditions of the occurrence of snow cover in central European lowlands. Int J Climatol 31:1108–1118

    Google Scholar 

  • Beebee T (2018) Climate change and British wildlife. Bloomsbury, London

    Google Scholar 

  • Bellassen V, Viovy N, Luyssaert S, Le Maire G, Schelhaas M-J, Ciais P (2011) Reconstruction and attribution of the carbon sink of European forests 1950–2000. Glob Change Biol 17:3274–3292

    Google Scholar 

  • Berdanier AB, Clark JS (2016) Multiyear drought-induced morbidity preceding tree death in southeastern U.S. forests. Ecol Appl 26:17–23

    Google Scholar 

  • Bergamini A, Ungricht S, Hofmann H (2009) An elevational shift of cryophilous bryophytes in the last century – an effect of climate warming? Divers Distrib 15:871–879

    Google Scholar 

  • Bertrand R, Lenoir J, Piedallu C, Riofrio-Dillon G, de Ruffray P, Vidal C, Pierrat J-C, Gégout J-C (2011) Change in plant community composition lags behind climate warming in lowland forests. Nature 479:517–520

    CAS  Google Scholar 

  • Bock A, Sparks TH, Estrella N, Menzel A (2013) Changes in the timing of hay cutting in Germany do not keep pace with climate warming. Glob Change Biol 19:3123–3132

    Google Scholar 

  • Bollens U, Ramseier D (2001) Shift in abundance in fen-meadow species along a nutrient gradient in a field experiment. Bull Geobot Inst ETH 67:57–71

    Google Scholar 

  • Bonn S, Poschlod P (1998) Ausbreitungsbiologie der Pflanzen Mitteleuropas. Quelle & Meyer, Wiesbaden

    Google Scholar 

  • Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Animal Ecol 78:73–83

    Google Scholar 

  • Bragazza L (2008) A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob Change Biol 14:2688–2695

    Google Scholar 

  • Braithwaite ME, Ellis RW, Preston CD (2006) Change in the British flora 1987–2004. Botanical Society of the British Isles, London

    Google Scholar 

  • Braun S, Schindler C, Rihm B (2017) Growth trends of beech and Norway spruce in Switzerland: the role of nitrogen deposition, ozone, mineral nutrition and climate. Sci Total Environ 599–600:637–646

    Google Scholar 

  • Braun-Blanquet J (1955) Die Vegetation des Piz Languard, ein Massstab für Klimaänderungen. Svensk Bot Tidskr 49:1–9

    Google Scholar 

  • Braun-Blanquet J (1957) Ein Jahrhundert Florenwandel am Piz Linard (3414 m). Bull Jardin Bot de l’État, Volume Jubilaire Walter Robyns (Comm. SIGMA 137), S. 221–232

    Google Scholar 

  • Brázdil R, Dobrovolny P, Luterbacher J, Moberg A, Pfister C, Wheeler D et al (2010) European climate of the past 500 years: new challenges for historical climatology. Clim Change 101:7–40

    Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–644

    Google Scholar 

  • Britton AJ, Beale CM, Towers W, Hewison RL (2009) Biodiversity gains and losses: evidence for homogenization of Scottish alpine vegetation. Biol Conserv 142:1728–1739

    Google Scholar 

  • Brown RD, Robinson DA (2011) Northern hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 5:219–229

    Google Scholar 

  • Brüggemann N, Butterbach-Bahl K (2017) Biogeochemische Stoffkreisläufe. In: Brasseur G, Jacob D, Schuck-Zöller S (Hrsg) Klimawandel in Deutschland. Springer Spektrum, Berlin, S 173–181

    Google Scholar 

  • Callauch R (1983) Untersuchungen zur Biologie und Vergesellschaftung der Stechpalme (Ilex aquifolium). Diss Univ Kassel, Kassel

    Google Scholar 

  • Camarero JJ, Glazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano M (2015) To die or not to die: early warnings of tree dieback in response to a severe drought. J Ecol 103:44–57

    CAS  Google Scholar 

  • Canadell JG, Pataki DE, Gifford R, Houghton RA, Luo Y, Raupach MR (2007) Saturation of the terrestrial carbon sink. In: Canadell JG, DE Pataki, Pitelka LF (Hrsg) Terrestrial ecosystems in a changing world. Springer, Berlin, S 59–78

    Google Scholar 

  • Cavin L, Mountford EP, Peterken GF, Jump AS (2013) Extreme drought alters competitive dominance within and between tree species in a mixed forest stand. Funct Ecol 27:1424–1435

    Google Scholar 

  • Cavin L, Jump AS (2016) Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob Change Biol, https://doi.org/10.1111/gcb.13366

  • Chapman DS (2013) Greater phenological sensitivity to temperature on higher Scottish mountains: new insights from remote sensing. Glob Change Biol 19:3463–3471

    Google Scholar 

  • Carey PD (2015) Biodiversity climate change report card technical paper. 5. Impacts of climate change on terrestrial habitats and vegetation. Biodiversity Report Card Paper 5. Bodsey Ecology, Huntingdon

    Google Scholar 

  • Charru M, Seynave I, Morneau F, Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260:864–874

    Google Scholar 

  • Chen L, Huang J-G, Ma Q, Hänninen H, Tremblay F, Bergeron Y (2019) Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Glob Change Biol 25:997–1004

    Google Scholar 

  • Chiune I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21:455–466

    Google Scholar 

  • Chmielewski F-M, Müller A, Bruns E (2004) Climate changes and trends in phenology of fruit trees and field crops in Germany, 1961–2000. Agric For Meteorol 121:69–78

    Google Scholar 

  • Chocholoušková Z, Pyšek P (2003) Changes in composition and structure of urban flora over 120 years: a case study of the city of Plzeň. Flora 198:366–376

    Google Scholar 

  • Christiansen B, Ljungqvist FC (2012) The extra-tropical Northern Hemisphere temperature in the last two millenia: reconstructions of low-frequency variability. Clim Past 8:765–786

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    CAS  Google Scholar 

  • Ciais P, Schelhaas MJ, Zaehle S, Piao SL, Cescatti A, Liski J, Luyssaert S, Le-Maire G, Schulze E-D, Bouriaud O, Freibauer A, Valentini R, Nabuurs GJ (2008) Carbon accumulation in European forests. Nat Geosci 1:425–429

    CAS  Google Scholar 

  • Ciesla WM, Donaubauer E (1994) Decline and dieback of trees and forests. A global overview. FAO Forestry Paper 120. FAO, Rome

    Google Scholar 

  • Cohen WB, Yang Z, Stehman SV, Schroeder TA, Bell DM, Masek JG, Huang C, Meigs GW (2016) Forest disturbance across the conterminous United States from 1985–2012: the emerging dominance of forest decline. For Ecol Manag 360:242–252

    Google Scholar 

  • Cook BI, Wolkovich EM, Parmesan C (2012) Divergent responses to spring and winter warming drive community level flowering trends. Proc Natl Acad Sci USA 109:9000–9005

    CAS  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496

    Google Scholar 

  • Cousins SAO (2009) Extinction debt in fragmented grasslands: paid or not? J Veg Sci 20:3–7

    Google Scholar 

  • Crimmins SM, Dobrowski SZ, Greenberg JA, Abatzoglou JT, Mynsberge AR (2011) Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331:324–327

    CAS  Google Scholar 

  • Dawes MA, Hättenschwiler S, Bebi P, Hagedorn F, Handa IT, Körner C, Rixen C (2011) Species-specific tree growth responses to 9 years of CO2 enrichment at the alpine treeline. J Ecol 99:383–394

    Google Scholar 

  • de Boeck HJ, Verbeeck H (2011) Drought associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences 8:1121–1130

    Google Scholar 

  • Defila C, Clot B (2003) Long-term urban-rural comparisons. In: Schartz MD (Hrsg.) Phenology: an integrative environmental science. Task for Vegetation Science 38:541–554

    Google Scholar 

  • De Frenne P, Rodríguez-Sánchez F, Coomes DA et al (2013) Microclimate moderates plant responses to macroclimate warming. Proc Natl Acad Sci USA 110:18561–18565

    Google Scholar 

  • Dekker J (2003) Evolutionary biology of the foxtail (Setaria) species-group. In: Inderjit (Hrsg) Weed biology and management. Kluwer, Dordrecht, S 65–114

    Google Scholar 

  • Della-Marta PM, Haylock MR, Luterbacher J, Wanner H (2007) Doubled length of western European summer heat waves since 1880. J Geophys Res 112(D15103):1–11

    Google Scholar 

  • de Vries W, Reinds GJ, Kerkvoorde M et al (2000) Intensive monitoring of forest ecosystems in Europe. Technical Report 2000. UN/ECE, Forest Intensive Monitoring Coordinate Institute, Heerenveen

    Google Scholar 

  • de Vries W, Solberg S, Dobbertin M et al (2009) The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. For Ecol Manag 258:1814–1823

    Google Scholar 

  • Diaz-Varela RA, Colombo R, Meroni M, Calvo-Iglesias MS, Buffoni A, Tagliaferri A (2010) Spatio-temporal analysis of alpine ecotones: a spatial explicit model targeting altitudinal vegetation shifts. Ecol Model 221:621–633

    Google Scholar 

  • Diekmann M (2010) Aktuelle Vegetationsveränderungen in Wäldern – Welche Rolle spielt der Klimawandel? Ber Reinhold-Tüxen-Ges 22:57–65

    Google Scholar 

  • Dierschke H (2000) Phenological phases and phenological species groups of mesic beech forests and their suitability for climatological monitoring. Phytocoenologia 30:469–476

    Google Scholar 

  • Dierschke H (2005) Zur Lebensweise, Ausbreitung und aktuellen Verbreitung von Hedera helix, einer ungewöhnlichen Pflanze unserer Flora und Vegetation. Hoppea 66:187–206

    Google Scholar 

  • Doak DF, Morris WF (2010) Demographic compensation and tipping points in climate-induced range shifts. Nature 467:959–962

    CAS  Google Scholar 

  • Donat MG, Renggli D, Wild S, Alexander LV, Leckebusch GC, Ulbrich U (2011) Reanalysis suggests long-term upward trend in European storminess since 1871. Geophys Res Lett 38(L14703):1–6

    Google Scholar 

  • Dörr E (2000) Verbreitung und Rückgang der Glazialrelikte in den Mooren des Allgäuer Raumes. Hoppea 61:567–585

    Google Scholar 

  • Doxford SW, Freckleton RP (2012) Changes in the large-scale distribution of plants: extinction, colonisation and the effects of climate. J Ecol 100:519–529

    Google Scholar 

  • Dulamsuren Ch, Hauck M, Kopp G, Ruff M, Leuschner C (2017) European beech responds to climate warming with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31:673–686

    Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2003) Patterns of shrub invasion into high mountain grasslands of the northern Calcareous Alps, Austria. Arct Antarct Alp Res 35:434–441

    Google Scholar 

  • EEA (2012) Climate change, impacts and vulnerability in Europe 2012. EEA Report No 12/2012. European Environmental Agency, Kopenhagen

    Google Scholar 

  • Elling W, Heber U, Polle A, Beese F (2007) Schädigung von Waldökosystemen. Spektrum, Heidelberg

    Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE et al (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    Google Scholar 

  • Estrella N, Sparks TH, Menzel A (2007) Trends and temperature response in the phenology of crops in Germany. Glob Change Biol 13:1737–1747

    Google Scholar 

  • Etzold S, Wunder J, Braun S, Rohner B, Bigler C, Abegg M, Rigling A (2016) Mortalität von Waldbäumen: Ursachen und Trends. In: Pluess AR, Augustin S, Brang P (Hrsg) Wald im Klimawandel. Grundlagen und Adaptationsstrategien. Haupt, Bern, S 177–196

    Google Scholar 

  • Fang J, Guo Z, Hu H, Kato T, Muraoka H, Son Y (2014) Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Change Biol 20:2019–2030

    Google Scholar 

  • Fernández-Martínez M, Vicca S, Janssens IA, Ciais P, Obersteiner M, Bartrons M et al (2017) Atmospheric deposition, CO2, and change in the land carbon sink. Sci Rep 7:9632

    Google Scholar 

  • Field CB, Mortsch LD, Brklacich M et al (2007) North America. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (Hrsg) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, S 617–652

    Google Scholar 

  • Filewod B, Thomas SC (2014) Impacts of a spring heat wave on canopy processes in a northern hardwood forest. Glob Change Biol 20:360–371

    Google Scholar 

  • Fitter AH, Fitter RS (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    CAS  Google Scholar 

  • Foken T (2004) Climate change in the Lehstenbach region. Ecol Stud 172:59–66

    Google Scholar 

  • Frank DC, Poulter B, Saurer M et al (2015) Water-use efficiency and transpiration across European forests during the Anthropocene. Nat Clim Change 5:579–584

    CAS  Google Scholar 

  • French DD, Miller GR, Cummins RP (1997) Recent development of high-altitude Pinus sylvestris scrub in the Northern Cairngorm Mountains, Scotland. Biol Conserv 79:133–144

    Google Scholar 

  • Fridley JD, Grime JP, Askew AP, Moser B, Stevens CJ (2011) Soil heterogeneity buffers community response to climate change in species-rich grassland. Glob Change Biol 17:2002–2011

    Google Scholar 

  • Fu YH, Piao S, Vitasse Y, Zhao H, de Boeck HJ, Liu Q, Weber U, Hänninen H, Janssens IA (2015a) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Change Biol 21:2687–2697

    Google Scholar 

  • Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñnuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015b) Declining global warming effects on the phenology of spring leaf enfolding. Nature 526:104–107

    CAS  Google Scholar 

  • Gallego-Sala AV, Prentice C (2013) Blanket peat biome endangered by climate change. Nat Clim Change 3:152–155

    Google Scholar 

  • Gange AC, Gange EG, Sparks TH, Boddy L (2007) Rapid and recent changes in fungal fruiting patterns. Science 316:71–75

    CAS  Google Scholar 

  • Garamvölgyi A, Hufnagel L (2013) Impacts of climate change on vegetation distribution. No. 1 – climate change induced vegetation shifts in the Palearctic region. Appl Ecol Environ Res 11:79–122

    Google Scholar 

  • García-Plazaola JI, Esteban R, Hormaetxe K, Fernández-Marín B, Becerril JM (2008) Photoprotective response of Mediterranean and Atlantic trees to the extreme heat-wave of summer 2003 in Southwestern Europe. Trees 22:385–392

    Google Scholar 

  • Garonna I, de Jong R, de Wit AJW, Mücher CA, Schmid B, Schaepman ME (2014) Strong contribution of autumn phenology to changes in satellite-derived growing season length estimates across Europe (1982–2011). Glob Change Biol 20:3457–3470

    Google Scholar 

  • Ge Q, Wang H, Rutishauser T, Dai J (2015) Phenological response to climate change in China: a meta-analysis. Glob Change Biol 21:265–274

    Google Scholar 

  • Gedalof Z, Berg AA (2010) Tree ring evidence for limited direct CO2 fertilization of forests over the 20th century. Glob Biogeochem Cycles 24(GB3027):1–6

    Google Scholar 

  • Gehrig-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: Climate change or land abandonment? J Veg Sci 18:571–582

    Google Scholar 

  • Gerstengarbe F-W, Badeck F, Hattermann F et al. (2003) Studie zur klimatischen Entwicklung im Land Brandenburg bis 2055 und die Auswirkungen auf den Wasserhaushalt, die Forst- und Landwirtschaft sowie die Ableitung erster Perspektiven. PIK-Report 83. Potsdam-Institut für Klimafolgenforschung, Potsdam

    Google Scholar 

  • Gianoni G, Carraro G, Klötzli F (1988) Thermophile, an laurophyllen Pflanzenarten reiche Waldgesellschaften im hyperinsubrischen Seenbereich des Tessins. Ber Geobot Inst ETH Zürich, Stiftung Rübel 54:164–180

    Google Scholar 

  • Gillner S, Rüger N, Roloff A, Berger U (2013) Low relative growth rates predict future mortality of common beech (Fagus sylvatica L.). For Ecol Manag 302:372–378

    Google Scholar 

  • Gottfried M, Pauli H, Futschik A et al (2012) Continent-wide response of mountain vegetation to climate change. Nat Clim Change 2:111–115

    Google Scholar 

  • Gower ST (2002) Productivity of terrestrial ecosystems. In: Mooney HA, Canadell J (Hrsg) Encyclopedia of climate change, vol 2. Blackwell, Oxford, S 515–521

    Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (1994) Climate effects on mountain plants. Nature 369:448

    CAS  Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. Ecol Stud 113:167–181

    Google Scholar 

  • Greller AM (1988) Deciduous forest. In: Barbour MG, Billings WD (Hrsg) North American terrestrial vegetation. Cambridge University Press, Cambridge, S 287–316

    Google Scholar 

  • Grime JP, Brown VK, Thompson K et al (2000) The response of two contrasting limestone grasslands to simulated climate change. Science 289:762–765

    CAS  Google Scholar 

  • Grime JP, Fridely JD, Askew AP, Thompson K, Hodgson JG, Bennet CR (2008) Long-term resistance to simulated climate change in an infertile grassland. Proc Natl Acad Sci USA 105:10028–10032

    CAS  Google Scholar 

  • Groisman PY, Knight RW (2008) Prolonged dry episodes over the conterminous United States: new tendencies emerging during the last 40 years. J Clim 21:1850–1862

    Google Scholar 

  • Groisman PY, Knight RW, Karl TR, Easterling DR, Sun B, Lawrimore JH (2004) Contemporary changes of the hydrological cycle over the contiguous United States: trends derived from in situ observations. J Hydrometeorol 5:64–85

    Google Scholar 

  • Groisman PY, Knight RW, Easterling DR, Hegerl GC, Razuvaev VN (2005) Trends in intense precipitation in the climate record. J Clim 18:1326–1350

    Google Scholar 

  • Groom QJ (2013) Some polward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ 1(e77):1–13

    Google Scholar 

  • Grundstein A (2009) Evaluation of climate change over the continental United States using a moisture index. Clim Change 93:103–115

    Google Scholar 

  • Gu L, Pallardy SG, Hosman KP, Sun Y (2015) Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosciences 12:2831–2845

    Google Scholar 

  • Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum-dominated mire ecosystems. A 40-year study. Ecography 25:685–704

    Google Scholar 

  • Hacket-Pain AJ, Friend AD, Lageard JA, Thomas PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol 35:319–330

    Google Scholar 

  • Hacket-Pain AJ, Cavin L, Friend AD, Jump AS (2016) Consistent limitation of growth by high temperatures and low precipitation from range core to southern edge of European beech indicates widespread vulnerability to changing climate. Eur J For Res 135:897–909

    Google Scholar 

  • Hacket-Pain AJ, Ascoli D, Vacchiano G et al (2018) Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecol Lett 21:1833–1844

    Google Scholar 

  • Hájková P, Hájek M, Rybniček K, Jiroušek M, Tichý L, Králová Š, Mikulášková E (2011) Long-term vegetation change in bogs exposed to high atmospheric deposition, aerial liming and climate fluctuation. J Veg Sci 22:891–904

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48(RG4004):1–29

    Google Scholar 

  • Hanson PJ, Weltzien JF (2000) Drought disturbance from climate change: response of United States forests. Sci Total Environ 262:205–220

    CAS  Google Scholar 

  • Härdtle W, Niemeyer T, Assmann T, Aulinger A, Fichtner A, Lang A et al (2013a) Climatic responses of tree-ring width and δ13C signatures of sessile oak (Quercus petraea Liebl.) on soils with contrasting water supply. Plant Ecol 214:1147–1156

    Google Scholar 

  • Härdtle W, Niemeyer T, Assmann T et al (2013b) Long-term trends in tree-ring width and isotope signatures (δ13C, δ 15N) of Fagus sylvatica L. on soils with contrasting water supply. Ecosystems 16:1413–1428

    Google Scholar 

  • Harsch MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12:1040–1049

    Google Scholar 

  • Hartl-Meier C, Zang C, Dittmar C, Esper J, Göttlein A, Rothe A (2014) Vulnerability of Norway spruce to climate change in mountain forests of the European Alps. Clim Res 60:199–132

    Google Scholar 

  • Hättenschwiler S, Körner C (1995) Responses to recent climate warming of Pinus sylvestris and Pinus cembra within their montane transition zone in the Swiss Alps. J Veg Sci 6:357–368

    Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in north-western Central Europe. Glob Change Biol 15:2653–2661

    Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113(D20119):1–12

    Google Scholar 

  • Hédl R (2004) Vegetation of beech forests in the Rychlebské Mountains, Czech Republic, re-inspected after 60 years with assessment of environmental changes. Plant Ecol 170:243–265

    Google Scholar 

  • Hember RA, Kurz WA, Metsaranta JM, Black TA, Guy RD, Coops NC (2012) Accelerating regrowth of temperate-maritime forests due to environmental change. Glob Change Biol 18:2026–2040

    Google Scholar 

  • Hogg EH, Brandt JP, Michaellian M (2008) Impacts of a regional drought on the productivity, dieback and biomass of western Canadian aspen forests. Can J For Res 38:1373–1384

    Google Scholar 

  • Hogg P, Squires P, Fitter AH (1995) Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biol Conserv 71:143–153

    Google Scholar 

  • Holland EA, Braswell BH, Lamarque J-F, Townsend A, Sulzman J, Müller J-F, Dentener F, Brasseur G, Il HI, Penner JE, Roelofs G-J (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J Geophys Res D 102:15849–15886

    CAS  Google Scholar 

  • Holsten A, Vetter T, Vohland K, Krysanova V (2013) Veränderungen des Bodenwassers in Brandenburg – eine Fallstudie. Naturschutz und Biologische Vielfalt 129:47–54

    Google Scholar 

  • Hosking GP, Kershaw DJ (1985) Red beech death in the Maruia Valley, South Island, New Zealand. N Z J Bot 23:201–211

    Google Scholar 

  • Hosking GP, Hutcheson JA (1986) Hard beech (Nothofagus truncata) decline on the Mamaku Plateau, North Island, New Zealand. New Zealand J Bot 24:263–269

    Google Scholar 

  • Hufnagel L, Garamvölgyi A (2014) Impacts of climate change on vegetation distribution. No. 2 – climate change induced vegetation shifts in the new world. Appl Ecol Environ Res 12:355–422

    Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    Google Scholar 

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Iverson LR, Schwartz MW, Prasad AM (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Glob Ecol Biogeogr 13:209–219

    Google Scholar 

  • Jakoby O, Stadelmann G, Lischke H, Wermelinger B (2016) Borkenkäfer und Befallsdisposition der Fichte im Klimawandel. In: Pluess AR, Augustin S, Brang P (Hrsg) Wald im Klimawandel. Grundlagen und Adaptationsstrategien. Haupt, Bern, S 247–264

    Google Scholar 

  • Jantsch MC, Fischer A, Fischer HS, Winter S (2013) Shifts in plant species composition reveals environmental changes during the last decades: a long-term study in beech (Fagus sylvatica) forests in Bavaria, Germany. Folia Geobot 48:467–491

    Google Scholar 

  • Jarvis PG, Leverenz JW (1983) Productivity of temperate, deciduous and evergreen forests. In: Lange OS, Nobel PS, Osmond B, Ziegler H (Hrsg) Physiological plant ecology IV. Springer, Berlin, S 233–280

    Google Scholar 

  • Jarvis PG, Sandford AP (1986) Temperate forests. In: Baker NR, Long SP (Hrsg) Photosynthesis in contrasting environments. Elsevier, Amsterdam, S 199–236

    Google Scholar 

  • Jentsch A, Kreyling J, Boettcher-Treschkow J, Beierkuhnlein C (2009) Beyond gradual warming: extreme weather events alter flower phenology of European grassland and heath species. Glob Change Biol 15:837–849

    Google Scholar 

  • Jochner S, Menzel A (2015) Urban phenological studies – past, present and future. Environ Poll 203:250–261

    CAS  Google Scholar 

  • Jump AS, Ruiz-Benito P, Greenwood S, Allen CD, Kitzberger T, Fensham R, Martínez-Vilalta J, Lloret F (2017) Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob Change Biol 23:3742–3757

    Google Scholar 

  • Jurasinski G, Kreyling J (2007) Upward shift of alpine plants increases floristic similarity of mountain summits. J Veg Sci 18:711–718

    Google Scholar 

  • Kahle HP, Karjalainen T, Schuck A, Ågren GI, Kellomäki S, Mellert K, Prietzel J, Rehfuess K-E, Spiecker H (Hrsg) (2008) Causes and consequences of forest growth trends in Europe. Results of the RECOGNITION Project. European Forest Institute, Joensuu

    Google Scholar 

  • Kamata N, Esaki K, Kato K, Igeta Y (2007) Potential impact of global warming on deciduous oak dieback caused by ambrosia fungus Raffaelea sp. carried by ambrosia beetle Platypus quercivorus (Coleoptera: Platypodidae) in Japan. Bull Entomol Res 92:119–126

    Google Scholar 

  • Karl TR, Groisman PY, Knight RW, Heim RR (1993) Recent variations of snow cover and snowfall in North America and their relation to precipitation and temperature variations. J Clim 6:1327–1344

    Google Scholar 

  • Kaspar F, Mächel H (2017) Beobachtung von Klima und Klimawandel in Mitteleuropa und Deutschland. In: Brasseur GP, Jacob D, Schuck-Zöller S (Hrsg) Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. Springer Spektrum, Berlin, S 17–26

    Google Scholar 

  • Kätzel R (2008) Klimawandel. Zur genetischen und physiologischen Anpassungsfähigkeit der Baumarten. Arch Forstwes Landschaftsökol 42:9–15

    Google Scholar 

  • Kaule G, Peringer A (2015) Die Entwicklung der Übergangs- und Hochmoore im südbayerischen Voralpengebiet im Zeitraum 1969 bis 2013 unter Berücksichtigung von Nutzungs- und Klimagradienten. Kessler Druck + Medien, Bobingen

    Google Scholar 

  • Kauserud H, Heegaard E, Büntgen U et al (2012) Warming-induced shift in European mushroom fruiting phenology. Proc Natl Acad Sci USA 109:14488–14493

    CAS  Google Scholar 

  • Keenan TF, Gray J, Friedl M, Toomey M, Bohrer G, Hollinger DY, Munger JM, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD (2014) Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change 4:598–604

    CAS  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826

    CAS  Google Scholar 

  • Kenk G, Fischer H (1988) Evidence from nitrogen fertilization in the forests of Germany. Environ Poll 54:199–218

    CAS  Google Scholar 

  • Kesel R, Gödeke T (1996) Wolffia arrhiza, Azolla filicuoides, Lemna turionifera und andere wärmeliebende Pflanzen in Bremen – Boten eines Klimawandels? Abh Naturwiss Ver Bremen 43:339–362

    Google Scholar 

  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B (2012) Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–363

    CAS  Google Scholar 

  • Klaus G (Hrsg) (2007) Zustand und Entwicklung der Moore in der Schweiz. Ergebnisse der Erfolgskontrolle Moorschutz. Umwelt-Zustand Nr. 0730. Bundesamt für Umwelt, Bern

    Google Scholar 

  • Klein T, Bader MK-F, Leuzinger S, Mildner M, Schleppi P, Siegwolf RTW, Körner C (2016) Growth and carbon relations of mature Picea abies trees under 5 years of free-air CO2 enrichment. J Ecol 104:1720–1733

    CAS  Google Scholar 

  • Knutzen F, Dulamsuren Ch, Meier IC, Leuschner C (2017) Recent climate warming-related growth decline impairs European beech in the center of its distribution range. Ecosystems 20:1494–1511

    CAS  Google Scholar 

  • Koike S, Fujita G, Higuchi H (2006) Climate change and the phenology of sympatric birds, insects and plants in Japan. Glob Env Res 10:167–174

    Google Scholar 

  • Körner C, Morgan J, Norby R (2007) CO2 fertilization: when, where, how much? In: Canadell JG, Pataki D, Pitelka L (Hrsg) Terrestrial ecosystems in a changing world. Global change – the IGBP series. Springer, Berlin, S 9–21

    Google Scholar 

  • Korsch H, Westhus W (2004) Auswertung der floristischen Kartierung und der Roten Liste Thüringens für den Naturschutz. Haussknechtia 10:3–67

    Google Scholar 

  • Kreyling J, Henry HAL (2011) Vanishing winters in Germany: soil frost dynamics and snow cover trends, and ecological implications. Clim Res 46:269–276

    Google Scholar 

  • Küchler M, Küchler H, Bedolla A et al (2015) Response of Swiss forests to management and climate change in the last 60 years. Ann For Sci 72:311–320

    Google Scholar 

  • Kudo G, Nishikawa Y, Kasagi T, Kosuge S (2004) Does seed production of spring ephemerals decrease when spring comes early? Ecol Res 19:255–259

    Google Scholar 

  • Kullman L, Kjällgen L (2006) Holocen pine tree-line evolution in the Swedish Scandes: recent tree-line rise and climate change in a long-term perspective. Boreas 35:159–168

    Google Scholar 

  • Kunert N (2019) Das Ende der Kiefer als Hauptbaumart in Mittelfranken. Allg Forstzeitschr 3:42–43

    Google Scholar 

  • Kunz M, Mohr S, Werner P (2017) Niederschlag. In: Brasseur GP, Jacob D, Schuck-Zöller S (Hrsg) Klimawandel in Deutschland. Entwicklung, Folgen, Risiken und Perspektiven. Springer Spektrum, Berlin, S 57–66

    Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M et al (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571

    Google Scholar 

  • Lakatos F, Molnár M (2009) Mass mortality of beech (Fagus sylvatica L.) in south-west Hungary. Acta Silv Lignaria Hung 5:75–82

    Google Scholar 

  • Lenoir J, Gégout J-C, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771

    CAS  Google Scholar 

  • Lenoir J, Gégout J-C, Guisan A, Vittoz P, Wohlgemuth T, Zimmermann NE, Dullinger S, Pauli H, Willner W, Svenning J-C (2010) Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography 33:295–303

    Google Scholar 

  • Leuschner C, Ellenberg H (2017a) Ecology of central European forests. Vegetation ecology of central Europe, Bd. I. Springer, Cham

    Google Scholar 

  • Leuschner C, Ellenberg H (2017b) Ecology of central European non-forest vegetation. Ecology of Central Europe, Bd. II. Springer, Cham

    Google Scholar 

  • Litza K, Diekmann M (2017) Resurveying hedgerows in Northern Germany: plant community shifts over the past 50 years. Biol Conserv 206:226–235

    Google Scholar 

  • Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22:1571–1592

    Google Scholar 

  • Lu Q, Lund R, Seymour L (2005) An update of U.S. temperature trends. J Climate 18:4906–4914

    Google Scholar 

  • Luedeling E, Girvetz EH, Semenov MA, Brown PH (2011) Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE 6(e20155):1–13

    Google Scholar 

  • Lukac M (2016) Agriculture and Forestry Climate Change Report. Card technical paper No. 6: Tree und stand growth and productivity. Natural Environment Research Council, Swindon

    Google Scholar 

  • Luojus K, Pulliainen J, Takala M et al (2011) Final Report. GlobSnow Deliverable 3.5. GlobSnow. http://www.wmo.int/pages/prog/www/OSY/Meetings/GCW-IM1/Doc11.1_GlobSnow_Report.pdf

  • Luyssaert S, Inglima I, Jung M, Richardson AD et al (2007) CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13:2509–2537

    Google Scholar 

  • Ma Q, Huang J-G, Hänninen H, Berninger F (2019) Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Glob Change Biol 25:351–360

    Google Scholar 

  • Maes SL, Perring MP, Vanhellemont M et al (2019) Environmental drivers interactively affect individual tree growth across temperate European forests. Glob Change Biol 25:201–217

    Google Scholar 

  • Mair L, Thomas CD, Anderson BJ, Fox R, Botham M, Hill JK (2012) Temporal variation in responses of species to four decade of climate warming. Glob Change Biol 18:2439–2447

    Google Scholar 

  • Malitz G, Beck C, Grieser J (2011) Veränderung der Starkniederschläge in Deutschland (Tageswerte der Niederschlagshöhe im 20. Jahrhundert). In: Lozan JL, Graßl H, Hupfer P, Karbe L, Schönwiese CD (Hrsg) Warnsignal Klima: Genug Wasser für alle?, 3. Aufl. Universitätsverlag Hamburg, Hamburg, S 311–316

    Google Scholar 

  • Manion PD, Lachance D (1992) Forest decline concepts. APS Press, St. Paul

    Google Scholar 

  • Marchin RM, Salk CF, Hoffman WA, Dunn RR (2015) Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Glob Change Biol 21:3138–3151

    Google Scholar 

  • Martínez-Sancho E, Dorado-Linan I, Heinrich I, Helle G, Menzel A (2017) Xylem adjustment of sessile oak at its southern distribution limits. Tree Physiol 37:903–914

    Google Scholar 

  • Martínez-Vilalta J, Lloret F (2014) Drought-induced vegetation shifts in terrestrial ecosystems: the key role of regeneration dynamics. Glob Planet Change 144:94–108

    Google Scholar 

  • Matulla C, Schoener W, Alexandersson H, von Storch H, Wang XL (2007) European storminess: late nineteenth century to present. Clim Dyn 31:125–130

    Google Scholar 

  • McCain CM, Colwell RK (2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett 14:1236–1245

    Google Scholar 

  • McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155:1051–1059

    CAS  Google Scholar 

  • McGlone MS, Walker S (2011) Potential effects of climate change on New Zealand’s terrestrial biodiversity and policy recommendations for mitigation, adaptation and research. Science for Conservation 312. Department of Conservation, Wellington

    Google Scholar 

  • McGovern S, Evans CD, Dennis P, Walmsley C, McDonald MA (2011) Identifying drivers of species compositional change in a semi-natural grassland over a 40-year period. J Veg Sci 22:346–356

    Google Scholar 

  • McMahon SM, Parker GG, Miller DR (2010) Evidence for a recent increase in forest growth. Proc Natl Acad Sci USA 107:3611–3615

    CAS  Google Scholar 

  • Medlyn BE, Barton CVM, Broadmeadow MSJ et al (2001) Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol 149:247–264

    Google Scholar 

  • Meier ES, Lischke H, Schmatz DR, Zimmermann NE (2012) Climate, competition and connectivity affect future migration and ranges of European trees. Glob Ecol Biogeogr 21:164–178

    Google Scholar 

  • Mencuccini M (2003) The ecological significance of long-distance water transport: short-term regulation, long-term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ 26:163–182

    Google Scholar 

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Change 57:243–263

    Google Scholar 

  • Menzel A, Estrella N, Fabian P (2001) Spatial and temporal variability of the phenological seasons in Germany from 1951 to 1996. Glob Change Biol 7:657–666

    Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P et al (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1969–1976

    Google Scholar 

  • Mietkiewicz N, Kulakowski D, Rogan J, Bebi P (2017) Long-term change in sub-alpine forest cover, tree line and species composition in the Swiss Alps. J Veg Sci 28:951–964

    Google Scholar 

  • Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Google Scholar 

  • Mizunaga H, Sako S, Nakao Y, Shimono Y (2005) Factors affecting the dynamics of the population of Fagus crenata in the Takahuma Mountains, the southern limit of its distribution area. J For Res 10:481–486

    Google Scholar 

  • Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlén W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617

    CAS  Google Scholar 

  • Moore PD (2002) The future of cool temperate bogs. Environ Conserv 29:3–20

    CAS  Google Scholar 

  • Müller-Haubold H, Hertel D, Leuschner C (2015) Climatic drivers of mast fruiting of European beech and resulting C and N allocation shifts. Ecosystems 18:1083–1100

    Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    CAS  Google Scholar 

  • Nabuurs G-J, Lindner M, Verkerk PJ, Gunia K, Deda P, Michalak R, Grassi G (2013) First signs of carbon sink saturation in European forest biomass. Nat Clim Change 3:792–796

    Google Scholar 

  • Nathan R (2006) Long-distance dispersal of plants. Science 313:786–788

    CAS  Google Scholar 

  • Natori T (2006) Impacts of global warming on alpine plants growing in the Japanese alpine zone and possibility of monitoring global warming impacts with alpine vegetation. Glob Env Res 10:161–166

    Google Scholar 

  • Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R (2017) Climate variability drives recent tree mortality in Europe. Glob Change Biol 23:4788–4797

    Google Scholar 

  • Nicolussi K, Bortenschläger S, Körner C (1995) Increase in tree ring width in subalpine Pinus cembra from the Central Alps that may be CO2-related. Trees 9:181–189

    Google Scholar 

  • Nogués-Bravo D, Araújo MB, Martínez-Rica JP, Errea MP (2007) Exposure of global mountain systems to climate change. Glob Environ Change 17:420–428

    Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Ann Rev Ecol Evol Syst 42:181–203

    Google Scholar 

  • Norby RJ, DeLucia EH, Gielen B et al (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA 102:18052–18056

    CAS  Google Scholar 

  • Norby RJ, Warren JM, Iversen CM, Medlyn BE, McMurtrie RE (2010) CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc Natl Acad Sci USA 107:19368–19373

    CAS  Google Scholar 

  • Oberhänsli H, Novotna K, Piskova A, Chabrillat S, Nourgaliev DK, Kurbaniyazov AK, Grygar TM (2011) Variability in precipitation, temperature and river runoff in W Central Asia during the past ~2000 yrs. Glob Plant Change 76:95–104

    Google Scholar 

  • Oberhuber W (2001) The role of climate in the mortality of Scots pine (Pinus sylvestris L.) exposed to soil dryness. Dendrochronologia 19:45–55

    Google Scholar 

  • Olano JM, Palmer MW (2003) Stand dynamics of an Appalachian old-growth forest during a severe drought episode. For Ecol Manag 174:139–148

    Google Scholar 

  • Oliva J, Stenlid J, Martínez-Vilalta J (2014) The effect fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol 203:1028–1035

    CAS  Google Scholar 

  • Oredsson A (1999) Recent changes in the flora of northern Scania, Sweden. Svensk Bot Tidskr 93:303–317

    Google Scholar 

  • Ott J (2010) The big trek northwards: recent changes in the European dragonfly fauna. In: Settele J, Penev L, Georgiev T, Grabaum R, Grobelink V, Hammen V, Klotz S, Kotarac M, Kühn I (Hrsg) Atlas of biodiversity risk. Pensoft, Sofia, S 82f

    Google Scholar 

  • Otte A, Bissels S, Waldhardt R (2006) Samen-, Keimungs- und Habitateigenschaften: Welche Parameter erklären Veränderungstendenzen in der Häufigkeit von Ackerwildkräutern in Deutschland? J Plant Diseas Prot Spec Issue 20:507–515

    Google Scholar 

  • Pal JS, Giorgi F, Bi XQ (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31(L13202):1–4

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  Google Scholar 

  • Parmesan C, Galbraith H (2004) Observed impacts of global climate change in the U.S. Pew Center on Climate Change, Arlington

    Google Scholar 

  • Parolo G, Rossi G (2008) Upward migration of vascular plants following a climate warming trend in the Alps. Basic Appl Ecol 9:100–107

    Google Scholar 

  • Pateman R, Hodgson J (2015) Biodiversity climate change impacts report. Card Technical Paper 6. Natural Environment Research Council, Swindon

    Google Scholar 

  • Pauli H, Gottfried M, Grabherr G (2001) High summits of the Alps in a changing climate. In: Walther G-R (Hrsg) “Fingerprints” of climate change. Kluwer, New York, S 139–149

    Google Scholar 

  • Pauli H, Gottfried M, Reiter K, Klettner C, Grabherr G (2007) Signals of range expansions and contractions of vascular plants in the high Alps: observations (1994–2004) at the GLORIA master station site Schrankogel, Tyrol, Austria. Glob Change Biol 13:147–156

    Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    CAS  Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837

    Google Scholar 

  • Peñuelas J, Hunt JM, Ogaya R, Jump AS (2008) Twentieth century changes of tree-ring β13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14:1076–1088

    Google Scholar 

  • Perry M (2006) A spatial analysis of trends in the UK climate since 1914 using gridded data sets. Climate Memorandum, Bd. 2006. Met Office, Devon

    Google Scholar 

  • Petercord R (2008) Zukünftige Gefährdung der Rotbuche durch rinden- und holzbrütende Käfer in Baden-Württemberg. Mitt Deut Ges Allg Angew Entomol 16:247–250

    Google Scholar 

  • Peterken GF, Mountford EP (1996) Effects of drought on beech in Lady Park Wood, an unmanaged mixed deciduous woodland. Forestry 69:125–136

    Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sust Develop 34:707–721

    Google Scholar 

  • Piao S, Ciais P, Friedlingstein P et al (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    CAS  Google Scholar 

  • Piovesan G, Biondi F, di Filipo A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines. Italy. Glob Change Biol 14:1265–1281

    Google Scholar 

  • Polce C, Garratt MP, Termansen M, Ramirez-Villegas J, Challinor AJ, Lappage MG, Boatman ND, Crowe A, Endalew AM, Potts SG, Somerwill KE, Biesmeijer JC (2014) Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Glob Change Biol 20:2815–2828

    Google Scholar 

  • Potter C, Li S, Hiatt C (2012) Declining vegetation growth rates in the eastern United States from 2000 to 2010. Nat Resourc 3:184–190

    Google Scholar 

  • Powney GD, Rapacciuolo G, Preston CD, Purvis A, Roy DB (2014) A phylogenetically-informed trait-based analysis of range change in the vascular plant flora of Britain. Biodiv Conserv 23:171–185

    Google Scholar 

  • Poyatos R, Aguade D, Galiano L, Mencuccini M, Martínez-Vilalta J (2013) Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol 200:388–401

    CAS  Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T (2014) Forest stand dynamics in Central Europe have accelerated since 1870. Nat Commun 5:4967

    CAS  Google Scholar 

  • Rabasa SG, Granda E, Benavides R, Kunstler G, Espelta JM, Ogaya R, Penuelas J et al (2013) Disparity in elevational shifts of European trees in response to recent climate warming. Glob Change Biol 19:2490–2499

    Google Scholar 

  • Rasztovits E, Berki I, Matyas C, Czimber K, Pötzelsberger E, Moricz N (2014) The incorporation of extreme drought events improves models for beech persistence at its distribution limit. Ann For Sci 71:201–210

    Google Scholar 

  • Rebetez M, Dobbertin M (2004) Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9

    Google Scholar 

  • Rennenberg H, Loreto F, Polle A, Brilli F, Fares S, Beniwal RS, Gessler A (2006) Physiological responses of forest trees to heat and drought. Plant Biol 8:556–571

    CAS  Google Scholar 

  • Restaino CM, Peterson DL, Littell J (2016) Increased water deficit decreases Douglas fir growth throughout the US forests. Proc Natl Acad Sci USA 113:9557–9562

    CAS  Google Scholar 

  • Rigling A, Dobbertin M, Bürgi M, Feldmeier-Christe E, Gimmi U, Ginzler C, Graf U, Mayer P, Zweifel R, Wohlgemuth T (2006) Baumartenwechsel in den Walliser Waldföhrenwäldern. Forum für Wissen, Bd. 2006: Wald und Klimawandel. WSL, Birmensdorf, S 23–33

    Google Scholar 

  • Rigling A, Bigler C, Eilmann B, Mayer P, Ginzler C, Vacchiano G, Weber P, Wohlgemuth T, Zweifel R (2013) Driving factors of a vegetation shift from Scots pine to pubescent oak in dry Alpine forests. Glob Change Biol 19:229–240

    Google Scholar 

  • Robinson SC, Ketchledge EH, Fitzgerald BT, Raynal DJ, Kimmerer RW (2010) A 23-year assessment of vegetation composition and change in the Adirondack alpine zone, New York State. Rhodora 112:355–377

    Google Scholar 

  • Rodríguez-Catón M, Villalba R, Morales M, Srur A (2016) Influence of droughts on Nothofagus pumilio forest decline across northern Patagonia, Argentina. Ecosphere 7(e01390):1–17

    Google Scholar 

  • Rohner B, Braun S, Weber P, Thürig E (2016) Wachstum von Einzelbäumen: das Klima als Baustein im komplexen Wirkungsgefüge. In: Pluess AR, Augustin S, Brang P (Hrsg) Wald im Klimawandel. Grundlagen und Adaptationsstrategien. Haupt, Bern, S 137–155

    Google Scholar 

  • Rollan C, Petitcolas V, Michalet R (1998) Changes in radial tree growth for Picea abies, Larix decidua, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13:40–53

    Google Scholar 

  • RUGSL (2011) Fall, winter, and spring northern hemisphere snow cover extent from the Rutgers University Global Snow Lab. Climate Science: Roger Pielke Sr. http://pielkeclimatesci.wordpress.com/2011/05/30/fall-winter-and-spring-northern-hemisphere-snow-cover-extent-from-the-rutgers-university-global-snow-lab/

  • Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281

    Google Scholar 

  • Salzer MW, Hughes MK, Bunn AG, Kipfmueller KF (2009) Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc Natl Adad Sci USA 106:20348–20353

    CAS  Google Scholar 

  • Samish RM (1954) Dormancy in woody plants. Annu Rev Plant Physiol 5:183–204

    Google Scholar 

  • Saugier B, Roy J, Mooney HA (2001) Estimations of global terrestrial productivity: converging toward a single number? In: Roy J, Saugier B, Mooney HA (Hrsg) Terrestrial global productivity. Academic Press, San Diego, S 543–557

    Google Scholar 

  • Saurer M, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100 years. Glob Change Biol 10:2109–2120

    Google Scholar 

  • Savva Y, Oleksyn J, Reib PB, Tjoelker MG, Vaganov EA, Modrzynski J (2006) Interannual growth response of Norway spruce to climate along an altitudinal gradient in the Tatra Mountains, Poland. Trees 20:735–746

    Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder A, Wilmking M (2011) Drought matters – declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–961

    Google Scholar 

  • Scheifinger H, Menzel A, Koch E, Peter C (2003) Trends of spring time frost events and phenological dates in Central Europe. Theor Appl Climatol 74:41–51

    Google Scholar 

  • Schelhaas M-J, Nabuurs G-J, Schuck A (2003) Natural disturbances in the European forests in the 19th and 20th centuries. Glob Change Biol 9:1620–1633

    Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Google Scholar 

  • Scherrer SC, Fischer EM, Posselt R, Liniger MA, Croci-Maspoli M, Knutti R (2016) Emerging trends in heavy precipitation and hot temperature extremes in Switzerland. J Geophys Res 121:2626–2637

    Google Scholar 

  • Schimel D, Melillo J, Tan H et al (2000) Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287:2004–2006

    CAS  Google Scholar 

  • Schönwiese C-D, Janoschitz R (2008) Klima-Trendatlas Deutschland 1901–2000. 2. Aufl. Berichte des Instituts für Atmosphäre und Umwelt der Universität Frankfurt/Main 4:1–64

    Google Scholar 

  • Schuldt B, Knutzen F, Delzon S, Jansen S, Müller-Haubold H, Burlett R, Clough Y, Leuschner C (2016) How adaptable is the hydraulic system of European beech in the face of climate change-related precipitation reduction? New Phytol 210:443–458

    Google Scholar 

  • Schwarz BU, Poschlod P (2015) Die Letzten ihrer Art in Bayern – Das Eiszeitrelikt Zwergbirke (Betula nana L.). Anliegen Natur (Laufen) 37:19–30

    Google Scholar 

  • Schwartz MD, Hanes JM (2010) Intercomparing multiple measures of the onset of spring in eastern North America. Int J Climatol 30:1614–1626

    Google Scholar 

  • Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S, Kudrna O, Kühn I, Pöyry J, Settele J (2012) Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecol Biogeogr 21:88–99

    Google Scholar 

  • Schwerbrock R, Leuschner C (2016) Air humidity as a key determinant of the morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii. Plant Biol 18:649–657

    CAS  Google Scholar 

  • Schwerbrock R, Leuschner C (2017) Vulnerability analysis of the rare and endangered woodland fern Polystichum braunii in Germany: three possible causes of population decline. Plant Ecol Divers 10:329–342

    Google Scholar 

  • Sekiguchi T (1969) The historical dates of Japanese cherry festivals since the 8th century and her climatic changes. Tokyo Geogr Pap 13:175–190

    Google Scholar 

  • Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M, Neumann M, Holstert P, Seidl R (2018) Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat Commun 9:4978

    Google Scholar 

  • Shimano K (2006) Differences in beech (Fagus crenata) regeneration between two types of Japanese beech forest and along a snow gradient. Ecol Res 21:651–663

    Google Scholar 

  • Silva LCR, Anand M (2013) Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes. Glob Ecol Biogeogr 22:83–92

    Google Scholar 

  • Siwecki R, Ufnalski K (1998) Review of oak stand decline with special reference to the role of drought in Poland. Eur J For Pathol 28:99–112

    Google Scholar 

  • Skou A-MT, Toneatto F, Kollmann J (2012) Are plant populations in expanding ranges made up of escaped cultivars? The case of Ilex aquifolium in Denmark. Plant Ecol 213:1131–1144

    Google Scholar 

  • Smith TT, Zaitchik BF, Gohlke JM (2013) Heat waves in the United States: definitions, patterns and trends. Clim Change 118:811–825

    Google Scholar 

  • Sparks TH, Collinson N (2007) Review of spring 2007, Nature’s calendar project. www.naturscalendar.org.uk/NR/rdonlyres/ES8D7E9E-0C9B-4ACD-AB54-14203125C5A3/0/report_spring_2007.pdf

  • Spiecker H (1999) Overview of recent growth trends in European forests. Water Air Soil Poll 116:33–46

    CAS  Google Scholar 

  • Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J (2014) World drought frequency, duration, and severity for 1951–2010. Int J Climatol 34:2792–2804

    Google Scholar 

  • Steinbauer MJ, Grytnes J-A, Jurasinski G et al (2018) Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556:231–234

    CAS  Google Scholar 

  • Stix S, Erschbamer B (2018) Zunahme der Artenvielfalt in zentralalpinen Mooren. Tuexenia 38:251–267

    Google Scholar 

  • Suarez ML, Kitzberger T (2008) Recruitment patterns following a severe drought: long-term compositional shifts in Patagonian forests. Can J For Res 38:3002–3010

    Google Scholar 

  • Suarez ML, Kitzberger T (2010) Differential effects of climate variability on forest dynamics along a precipitation gradient in northern Patagonia. J Ecol 98:1023–1034

    Google Scholar 

  • Suarez ML, Ghermandi L, Kitzberger T (2004) Factors predisposing episodic drought-induced tree mortality in Nothofagus – site, climatic sensitivity and growth trends. J Ecol 92:954–966

    Google Scholar 

  • Takala M, Luojus K, Pulliainen J et al (2011) Estimating northern hemisphere snow water equivalent for climate research through assimilation of space-borne radiometer data and ground-based measurements. Remote Sens Environ 115:3517–3529

    Google Scholar 

  • Tamis WLM, van’t Zelfde M, van der Meijden R, de Haes HAU (2005) Changes in vascular plant biodiversity in the Netherlands in the 20th century explained by their climatic and other environmental characteristics. Climatic Change 72:37–56

    Google Scholar 

  • Tang G, Ding Y, Wang S, Ren G, Liu H, Zhang L (2010) Comparative analysis of China surface air temperature series for the past 100 years. Adv Clim Change Res 1:11–19

    Google Scholar 

  • Theurillat JP, Guisan A (2001) Potential impact of climate change on vegetation in the European Alps: a review. Clim Change 50:77–109

    CAS  Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their ranges northwards. Nature 399:213

    CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    CAS  Google Scholar 

  • Thomas CD, Franco AMA, Hill JK (2006) Range retractions and extinction in the face of climate warming. Trends Ecol Evol 21:415–416

    Google Scholar 

  • Umweltbundesamt (Hrsg.) (2005) Daten zur Umwelt. Umweltbundesamt, Dessau

    Google Scholar 

  • Usbeck T, Wohlgemuth T, Dobbertin M, Pfister C, Burgi A, Rebetez M (2010) Increasing storm damage to forests in Switzerland from 1858 to 2007. Agric For Meteorol 241:189–199

    Google Scholar 

  • van der Hoek D, van Mierlo AJEM, Groenendael JM (2004) Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow. J Veg Sci 15:389–396

    Google Scholar 

  • van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Google Scholar 

  • van Mantgem PJ, Stephenson NL, Byrne JC, Daniels LD, Franklin JF, Fulé PZ, Harmon ME, Larson AJ, Smith JM, Taylor AH, Veblen TT (2009) Widespread increase of tree mortality rates in the Western United States. Science 323:521–524

    Google Scholar 

  • VDI (2017) Biologische Messverfahren zur Ermittlung und Beurteilung der Wirkung von Luftverunreinigungen (Biomonitoring). Kartierung von Flechten zur Ermittlung der Wirkung von lokalen Klimaveränderungen. VDI 3957, Blatt 20. Verein Deutscher Ingenieure, Düsseldorf

    Google Scholar 

  • Vilén T, Gunia K, Verkerk PJ, Seidl R, Schelhaas M-J, Lindner M, Bellassen V (2012) Reconstructed forest age structure in Europe 1950–2010. For Ecol Manag 286:203–218

    Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for yardstick. Proc Roy Soc B 272:2561–2569

    Google Scholar 

  • Visser ME, Holleman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc Roy Soc B 268:289–294

    CAS  Google Scholar 

  • Vitasse Y, Porté AJ, Kremer A, Michalet R, Delzon S (2009) Response of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161:187–198

    Google Scholar 

  • Vitasse Y, Hoch G, Randin CF, Lenz A, Kollas C, Körner C (2012) Tree recruitment of European tree species at their current upper elevational limits in the Swiss Alps. J Biogeogr 39:1439–1449

    Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Walck JL, Hidayati SN, Dixon KW, Thompson K, Poschlod P (2011) Climate change and plant regeneration from seed. Glob Change Biol 17:2145–2161

    Google Scholar 

  • Walther G-R (2000) Climate forcing on the dispersal of exotic species. Phytocoenologia 30:409–430

    Google Scholar 

  • Wang XL, Wan H, Zwiers FW, Swail VR, Compo GP et al (2011) Trends and low-frequency variability of storminess over western Europe, 1878–2007. Clim Dyn 37:2355–2371

    Google Scholar 

  • Waring RH, Franklin JF (1979) Evergreen coniferous forests of the Pacific Northwest. Science 204:1380–1386

    CAS  Google Scholar 

  • Warren CR, Garcia-Plazaola JI, Niinemets Ü (2012) Ecophysiology of photosynthesis in temperate forests. In: Flexas J, Loreto F, Medrano H (Hrsg) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, S 465–487

    Google Scholar 

  • Way DA, Montomery RA (2014) Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant Cell Environ 38:1725–1736

    Google Scholar 

  • Weber P, Bugmann H, Pluess AR, Walthert L, Rigling A (2013) Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171–181

    Google Scholar 

  • Weber E, Gut D (2005) A survey of weeds that are increasingly spreading in Europe. Agron Sust Develop 25:109–121

    Google Scholar 

  • Williams TA, Abberton MT (2004) Earlier flowering between 1962 and 2002 in agricultural varieties of white clover. Oecologia 138:122–126

    CAS  Google Scholar 

  • Wittig R (2002) Siedlungsvegetation. Ulmer, Stuttgart, S 252

    Google Scholar 

  • Wohlgemuth T, Gallien L, Zimmermann NE (2016) Verjüngung von Buche und Fichte im Klimawandel. In: Pluess AR, Augustin S, Brang P (Hrsg) Wald im Klimawandel. Grundlagen für Adaptationsstrategien. Haupt, Bern, S 115–135

    Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM et al (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

  • Worrall JJ, Egeland L, Eager T, Mask RA, Johnson EW, Kemp PA, Shepperd WD (2008) Rapid mortality of Populus tremuloides in southwestern Colorado, USA. For Ecol Manag 255:686–696

    Google Scholar 

  • Wu X, Brüggemann N, Gasche R, Shen Z, Wolf B, Butterbach-Bahl K (2010) Environmental controls over soil-atmosphere exchange of N2O, NO, and CO2 in a temperate Norway spruce forest. Glob Biogeochem Cycl 24(GB2012):1–12

    Google Scholar 

  • Yamane Y, Kashino Y, Koike H, Satoh K (1997) Increase in the fluorescence F0 level and reversible inhibition of photosystem II reaction center by high-temperature treatments in higher plants. Photosynthesis Res 52:57–64

    CAS  Google Scholar 

  • Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A (2014) Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20:3767–3779

    Google Scholar 

  • Zerbe S (1992) Fichtenforste als Ersatzgesellschaften von Hainsimsen-Buchenwäldern. Vegetationsveränderungen eines Forstökosystems. Ber Forschungszentr Waldökosyst A 100:1–173

    Google Scholar 

  • Zhu K, Woodall CW, Clark JS (2012) Failure to migrate: lack of tree range expansion in response to climate change. Glob Change Biol 18:1042–1052

    Google Scholar 

  • Zierl B (2004) A simulation study to analyse the relations between crown condition and drought in Switzerland. For Ecol Manag 188:25–38

    Google Scholar 

  • Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015) Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18:560–572

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Hauck .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauck, M., Leuschner, C., Homeier, J. (2019). Temperate Waldzone. In: Klimawandel und Vegetation - Eine globale Übersicht. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59791-0_5

Download citation

Publish with us

Policies and ethics