Skip to main content

Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications

  • Chapter
  • First Online:
Book cover Nanotechnology Characterization Tools for Environment, Health, and Safety

Abstract

The chapter presents some of the significant research done on the utilization of nanoparticles to fabricate and implement flexible wearable sensors for health monitoring applications. The involvement of nanoparticles has greatly influenced the operation of wearable sensors in terms of reduction in time and cost. The electrical, mechanical, and thermal advantages of nanoparticles have imparted the flexible sensors to be deployed for detection of multiple physiological parameters associated with human beings. Along with the processed materials, the fabrication technique, and the uses of some of the nanoparticles-based flexible wearable sensors, the challenges associated with the current sensors and some of the future opportunities are also depicted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2:1–10

    Article  Google Scholar 

  2. Wang AZ et al (2012) Nanoparticle delivery of cancer drugs. Annu Rev Med 63:185–198

    Article  CAS  Google Scholar 

  3. Yang Y et al (2017) Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Res 10:1560–1583

    Article  Google Scholar 

  4. Bennett J et al (2017) Healthcare in the smart home: a study of past, present and future. Sustainability 9:840

    Article  Google Scholar 

  5. Nanotechnology in smart medical wearables. Available: http://www.nanotechmag.com/nanotechnology-smart-medical-wearables/

  6. Nanotechnology in medical applications: global market 2017 – research and markets. Available: https://www.businesswire.com/news/home/20171013005220/en/Nanotechnology-Medical-Applications-Global-Market-2017%2D%2D

  7. Nag A et al (2017) Wearable flexible sensors: a review. IEEE Sensors J 17:3949–3960

    Article  CAS  Google Scholar 

  8. El-Ansary A, Faddah LM (2010) Nanoparticles as biochemical sensors. Nanotechnol Sci Appl 3:65

    Article  CAS  Google Scholar 

  9. Wang Y et al (2014) Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv Funct Mater 24:4666–4670

    Article  CAS  Google Scholar 

  10. Zhang Y et al (2017) Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl Mater Interfaces 9:35968–35976

    Article  CAS  Google Scholar 

  11. Nag A et al (2016) Tactile sensing from laser-ablated metallized PET films. IEEE Sensors J 17:7–13

    Article  Google Scholar 

  12. Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  Google Scholar 

  13. Dobrzynska JA, Gijs MA (2012) Flexible polyimide-based force sensor. Sensors Actuators A Phys 173:127–135

    Article  CAS  Google Scholar 

  14. Kim DH et al (2012) Thin, flexible sensors and actuators as ‘instrumented’ surgical sutures for targeted wound monitoring and therapy. Small 8:3263–3268

    Article  CAS  Google Scholar 

  15. Wang H (2017) Development of a conformable electronic skin based on silver nanowires and PDMS. In: IOP conference series: materials science and engineering. p 012040

    Google Scholar 

  16. Zhou D et al (2017) Conformable pressure sensor array based on silver nanowires and PDMS for electronic skin application. Sens Lett 15:11–18

    Article  Google Scholar 

  17. Wu N et al (2015) Cellular polypropylene piezoelectric for human body energy harvesting and health monitoring. Adv Funct Mater 25:4788–4794

    Article  CAS  Google Scholar 

  18. Li W et al (2017) Sensitivity-enhanced wearable active voiceprint sensor based on cellular polypropylene piezoelectric. ACS Appl Mater Interfaces 9:23716–23722

    Article  CAS  Google Scholar 

  19. Zhao J et al (2015) A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane. J Mater Chem A 3:24333–24337

    Article  CAS  Google Scholar 

  20. Muthukumar N et al (2017) Analysis of piezoresistive behavior of polyaniline-coated nylon Lycra fabrics for elbow angle measurement. J Text Inst 108:233–238

    CAS  Google Scholar 

  21. Savagatrup S et al (2015) Plasticization of PEDOT: PSS by common additives for mechanically robust organic solar cells and wearable sensors. Adv Funct Mater 25:427–436

    Article  CAS  Google Scholar 

  22. Honda W et al (2014) Wearable, human-interactive, health-monitoring, wireless devices fabricated by macroscale printing techniques. Adv Funct Mater 24:3299–3304

    Article  CAS  Google Scholar 

  23. Kulkarni M et al (2014) Biomaterial surface modification of titanium and titanium alloys for medical applications. Nanomedicine 111:111

    Google Scholar 

  24. Pessoa JC et al (2015) Vanadium compounds in medicine. Coord Chem Rev 301:24–48

    Article  CAS  Google Scholar 

  25. Rasmussen JW et al (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7:1063–1077

    Article  CAS  Google Scholar 

  26. Chitambar CR (2010) Medical applications and toxicities of gallium compounds. Int J Environ Res Public Health 7:2337–2361

    Article  CAS  Google Scholar 

  27. Park S et al (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Article  CAS  Google Scholar 

  28. Rim YS et al (2015) Printable ultrathin metal oxide semiconductor-based conformal biosensors. ACS Nano 9:12174–12181

    Article  CAS  Google Scholar 

  29. Kim SY et al (2015) Highly sensitive and multimodal all-carbon skin sensors capable of simultaneously detecting tactile and biological stimuli. Adv Mater 27:4178–4185

    Article  CAS  Google Scholar 

  30. Meng Y et al (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331

    Article  CAS  Google Scholar 

  31. Boland CS et al (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene–rubber composites. ACS Nano 8:8819–8830

    Article  CAS  Google Scholar 

  32. Shi J et al (2016) Graphene reinforced carbon nanotube networks for wearable strain sensors. Adv Funct Mater 26:2078–2084

    Article  CAS  Google Scholar 

  33. Park JJ et al (2015) Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl Mater Interfaces 7:6317–6324

    Article  CAS  Google Scholar 

  34. Lee H et al (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566

    Article  CAS  Google Scholar 

  35. Meng B et al (2013) A transparent single-friction-surface triboelectric generator and self-powered touch sensor. Energy Environ Sci 6:3235–3240

    Article  Google Scholar 

  36. Fan F-R et al (2012) Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 12:3109–3114

    Article  CAS  Google Scholar 

  37. Yang PK et al (2015) A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Adv Mater 27:3817–3824

    Article  CAS  Google Scholar 

  38. Chung SY et al (2012) All-solution-processed flexible thin film piezoelectric nanogenerator. Adv Mater 24:6022–6027

    Article  CAS  Google Scholar 

  39. Shin S-H et al (2014) Hemispherically aggregated BaTiO3 nanoparticle composite thin film for high-performance flexible piezoelectric nanogenerator. ACS Nano 8:2766–2773

    Article  CAS  Google Scholar 

  40. Yao S, Zhu Y (2016) Nanomaterial-enabled dry electrodes for electrophysiological sensing: a review. JOM 68:1145–1155

    Article  Google Scholar 

  41. Son D et al (2014) Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat Nanotechnol 9:397–404

    Article  CAS  Google Scholar 

  42. Liu C et al (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637–648

    Article  CAS  Google Scholar 

  43. Yapici MK et al (2015) Graphene-clad textile electrodes for electrocardiogram monitoring. Sensors Actuators B Chem 221:1469–1474

    Article  CAS  Google Scholar 

  44. Yun Y-H et al (2009) Tiny medicine: nanomaterial-based biosensors. Sensors 9:9275–9299

    Article  CAS  Google Scholar 

  45. Myung S et al (2011) Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Adv Mater 23:2221–2225

    Article  CAS  Google Scholar 

  46. Mishra RK et al (2017) Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats. ACS Sensors 2:553–561

    Article  CAS  Google Scholar 

  47. Pradhan D et al (2010) High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl Mater Interfaces 2:2409–2412

    Article  CAS  Google Scholar 

  48. Ahn CH et al (2004) Disposable smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92:154–173

    Article  CAS  Google Scholar 

  49. Peterson RD et al (2014) A photonic crystal biosensor assay for ferritin utilizing iron-oxide nanoparticles. Biosens Bioelectron 56:320–327

    Article  CAS  Google Scholar 

  50. Choi C et al (2016) Nanomaterial-based soft electronics for healthcare applications. ChemNanoMat 2:1006–1017

    Article  CAS  Google Scholar 

  51. Yi W (2015) Flexible fabric strain sensors. In: Tao X (ed) Handbook of smart textiles. Springer, Singapore, pp 293–316

    Google Scholar 

  52. Liu Z et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44:161–192

    Article  CAS  Google Scholar 

  53. Kim S-W et al (2017) A triple-mode flexible E-skin sensor interface for multi-purpose wearable applications. Sensors 18:78

    Article  CAS  Google Scholar 

  54. Seung W et al (2015) Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9:3501–3509

    Article  CAS  Google Scholar 

  55. Kim KN et al (2015) Highly stretchable 2D fabrics for wearable triboelectric nanogenerator under harsh environments. ACS Nano 9:6394–6400

    Article  CAS  Google Scholar 

  56. Yeo SY et al (2017) Highly sensitive flexible pressure sensors based on printed organic transistors with centro-apically self-organized organic semiconductor microstructures. ACS Appl Mater Interfaces 9:42996–43003

    Article  CAS  Google Scholar 

  57. Liao C et al (2015) Flexible organic electronics in biology: materials and devices. Adv Mater 27:7493–7527

    Article  CAS  Google Scholar 

  58. Hou C et al (2014) Highly conductive, flexible, and compressible all-graphene passive electronic skin for sensing human touch. Adv Mater 26:5018–5024

    Article  CAS  Google Scholar 

  59. Sun Q et al (2015) Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv Mater 27:3411–3417

    Article  CAS  Google Scholar 

  60. Hu W et al (2013) Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. Appl Phys Lett 102:38

    Google Scholar 

  61. Mahdavi A et al (2008) A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc Natl Acad Sci 105:2307–2312

    Article  Google Scholar 

  62. Park J et al (2016) Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci Transl Med 8:344ra86–344ra86

    Article  CAS  Google Scholar 

  63. Khodagholy D et al (2016) Organic electronics for high-resolution electrocorticography of the human brain. Sci Adv 2:e1601027

    Article  Google Scholar 

  64. Jang K-I et al (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5:4779

    Article  CAS  Google Scholar 

  65. Choi MK et al (2015) Thermally controlled, patterned graphene transfer printing for transparent and wearable electronic/optoelectronic system. Adv Funct Mater 25:7109–7118

    Article  CAS  Google Scholar 

  66. Minev IR et al (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–163

    Article  CAS  Google Scholar 

  67. Son D et al (2015) Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 9:5937–5946

    Article  CAS  Google Scholar 

  68. Kang S-K et al (2016) Bioresorbable silicon electronic sensors for the brain. Nature 530:71–76

    Article  CAS  Google Scholar 

  69. Kim SJ et al (2016) Stretchable and transparent biointerface using cell-sheet–graphene hybrid for electrophysiology and therapy of skeletal muscle. Adv Funct Mater 26:3207–3217

    Article  CAS  Google Scholar 

  70. Kim D-H et al (2011) Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nat Mater 10:316

    Article  CAS  Google Scholar 

  71. Lee H et al (2015) An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 6:10059

    Article  CAS  Google Scholar 

  72. Kim T-i et al (2013) Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340:211–216

    Article  CAS  Google Scholar 

  73. Xie C et al (2015) Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat Mater 14:1286

    Article  CAS  Google Scholar 

  74. Jeong J-W et al (2015) Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162:662–674

    Article  CAS  Google Scholar 

  75. Yao S et al (2018) Nanomaterial-enabled wearable sensors for healthcare. Adv Healthc Mater 7:1700889

    Article  CAS  Google Scholar 

  76. Han S et al (2016) Mechanically reinforced skin-electronics with networked nanocomposite elastomer. Adv Mater 28:10257–10265

    Article  CAS  Google Scholar 

  77. Lipomi DJ et al (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792

    Article  CAS  Google Scholar 

  78. Yao S, Zhu Y (2014) Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 6:2345–2352

    Article  CAS  Google Scholar 

  79. Roh E et al (2015) Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 9:6252–6261

    Article  CAS  Google Scholar 

  80. Li Y et al (2016) Poisson ratio and piezoresistive sensing: a new route to high-performance 3D flexible and stretchable sensors of multimodal sensing capability. Adv Funct Mater 26:2900–2908

    Article  CAS  Google Scholar 

  81. Li Q et al (2017) Review of flexible temperature sensing networks for wearable physiological monitoring. Adv Healthc Mater 22:1700889

    Google Scholar 

  82. Jin H et al (2017) Advanced materials for health monitoring with skin-based wearable devices. Adv Healthc Mater 11:112–125

    Google Scholar 

  83. Trung TQ, Lee NE (2016) Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv Mater 28:4338–4372

    Article  CAS  Google Scholar 

  84. Yan C et al (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137

    Article  CAS  Google Scholar 

  85. Hong SY et al (2016) Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Adv Mater 28:930–935

    Article  CAS  Google Scholar 

  86. Takei K et al (2010) Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 9:821

    Article  CAS  Google Scholar 

  87. Mostafalu P, Sonkusale S (2015) A high-density nanowire electrode on paper for biomedical applications. RSC Adv 5:8680–8687

    Article  CAS  Google Scholar 

  88. Myers AC et al (2015) Wearable silver nanowire dry electrodes for electrophysiological sensing. RSC Adv 5:11627–11632

    Article  CAS  Google Scholar 

  89. Lee SM et al (2014) Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep 4:6074

    Article  CAS  Google Scholar 

  90. Zhao J et al (2013) A comparison between strain sensing behaviors of carbon black/polypropylene and carbon nanotubes/polypropylene electrically conductive composites. Compos A: Appl Sci Manuf 48:129–136

    Article  CAS  Google Scholar 

  91. Lin L et al (2013) Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer. ACS Appl Mater Interfaces 5:5815–5824

    Article  CAS  Google Scholar 

  92. Lee C et al (2013) High strain biocompatible polydimethylsiloxane-based conductive graphene and multiwalled carbon nanotube nanocomposite strain sensors. Appl Phys Lett 102:183511

    Article  CAS  Google Scholar 

  93. Tian H et al (2014) Scalable fabrication of high-performance and flexible graphene strain sensors. Nanoscale 6:699–705

    Article  CAS  Google Scholar 

  94. Amjadi M et al (2014) Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8:5154–5163

    Article  CAS  Google Scholar 

  95. Lee T et al (2016) Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv Funct Mater 26:6206–6214

    Article  CAS  Google Scholar 

  96. Ryu S et al (2015) ACS Nano 9:5929. CrossRef Google Scholar

    Article  CAS  Google Scholar 

  97. Cai G et al (2017) Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection. Adv Sci 4:41

    Google Scholar 

  98. Woo S-J et al (2014) A thin all-elastomeric capacitive pressure sensor array based on micro-contact printed elastic conductors. J Mater Chem C 2:4415–4422

    Article  CAS  Google Scholar 

  99. Cai L et al (2013) Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci Rep 3:3048

    Article  Google Scholar 

  100. Nour E et al (2015) A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration. Nanotechnology 26:095502

    Article  CAS  Google Scholar 

  101. Lim S et al (2015) Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater 25:375–383

    Article  CAS  Google Scholar 

  102. Gong S, Cheng W (2017) One-dimensional nanomaterials for soft electronics. Adv Electron Mater 3:1600314

    Article  CAS  Google Scholar 

  103. Bae S-H et al (2013) Graphene-based transparent strain sensor. Carbon 51:236–242

    Article  CAS  Google Scholar 

  104. Kim KK et al (2015) Highly sensitive and stretchable multidimensional strain sensor with prestrained anisotropic metal nanowire percolation networks. Nano Lett 15:5240–5247

    Article  CAS  Google Scholar 

  105. Nie B et al (2012) Droplet-based interfacial capacitive sensing. Lab Chip 12:1110–1118

    Article  CAS  Google Scholar 

  106. Zhu B et al (2014) Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10:3625–3631

    Article  CAS  Google Scholar 

  107. Bae GY et al (2016) Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 28:5300–5306

    Article  CAS  Google Scholar 

  108. Jung S et al (2014) Reverse-micelle-induced porous pressure-sensitive rubber for wearable human–machine interfaces. Adv Mater 26:4825–4830

    Article  CAS  Google Scholar 

  109. Yao HB et al (2013) A flexible and highly pressure-sensitive graphene–polyurethane sponge based on fractured microstructure design. Adv Mater 25:6692–6698

    Article  CAS  Google Scholar 

  110. Si Y et al (2016) Ultralight biomass-derived carbonaceous nanofibrous aerogels with superelasticity and high pressure-sensitivity. Adv Mater 28:9512–9518

    Article  CAS  Google Scholar 

  111. Wang Q et al (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657

    Article  CAS  Google Scholar 

  112. Li T et al (2016) Flexible capacitive tactile sensor based on micropatterned dielectric layer. Small 12:5042–5048

    Article  CAS  Google Scholar 

  113. Kwon D et al (2016) Highly sensitive, flexible, and wearable pressure sensor based on a giant piezocapacitive effect of three-dimensional microporous elastomeric dielectric layer. ACS Appl Mater Interfaces 8:16922–16931

    Article  CAS  Google Scholar 

  114. Wu W et al (2013) Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active/adaptive tactile imaging. Science 340:1234855

    Article  CAS  Google Scholar 

  115. Park S-H et al (2016) Flexible and stretchable piezoelectric sensor with thickness-tunable configuration of electrospun nanofiber mat and elastomeric substrates. ACS Appl Mater Interfaces 8:24773–24781

    Article  CAS  Google Scholar 

  116. Lin L et al (2013) Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 7:8266–8274

    Article  CAS  Google Scholar 

  117. Khan U et al (2017) Graphene tribotronics for electronic skin and touch screen applications. Adv Mater 29:1603544

    Article  CAS  Google Scholar 

  118. Choi S et al (2016) Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 28:4203–4218

    Article  CAS  Google Scholar 

  119. Mannsfeld SC et al (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864

    Article  CAS  Google Scholar 

  120. Lee S et al (2014) A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nat Commun 5:5898

    Article  CAS  Google Scholar 

  121. Pang C et al (2012) A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 11:795–801

    Article  CAS  Google Scholar 

  122. Pang C et al (2015) Highly skin-conformal microhairy sensor for pulse signal amplification. Adv Mater 27:634–640

    Article  CAS  Google Scholar 

  123. Fan JA et al (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266

    Article  CAS  Google Scholar 

  124. Hattori Y et al (2014) Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthc Mater 3:1597–1607

    Article  CAS  Google Scholar 

  125. Lu N et al (2012) Highly sensitive skin-mountable strain gauges based entirely on elastomers. Adv Funct Mater 22:4044–4050

    Article  CAS  Google Scholar 

  126. Sekitani T et al (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468–1472

    Article  CAS  Google Scholar 

  127. Xu S et al (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366

    Article  CAS  Google Scholar 

  128. Park M et al (2015) Oxide nanomembrane hybrids with enhanced mechano-and thermo-sensitivity for semitransparent epidermal electronics. Adv Healthc Mater 4:992–997

    Article  CAS  Google Scholar 

  129. Gao L et al (2014) Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin. Nat Commun 5:4938

    Article  CAS  Google Scholar 

  130. Choi MK et al (2015) Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nat Commun 6:7149

    Article  CAS  Google Scholar 

  131. Xu L et al (2015) Materials and fractal designs for 3D multifunctional integumentary membranes with capabilities in cardiac electrotherapy. Adv Mater 27:1731–1737

    Article  CAS  Google Scholar 

  132. Khodagholy D et al (2011) Highly conformable conducting polymer electrodes for in vivo recordings. Adv Mater 23:H268–H272

    Article  CAS  Google Scholar 

  133. Qi D et al (2015) Highly stretchable gold nanobelts with sinusoidal structures for recording electrocorticograms. Adv Mater 27:3145–3151

    Article  CAS  Google Scholar 

  134. Vitale F et al (2015) Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS Nano 9:4465–4474

    Article  CAS  Google Scholar 

  135. Zhang H et al (2012) Layered nanocomposites from gold nanoparticles for neural prosthetic devices. Nano Lett 12:3391–3398

    Article  CAS  Google Scholar 

  136. Kim SJ et al (2015) Multifunctional cell-culture platform for aligned cell sheet monitoring, transfer printing, and therapy. ACS Nano 9:2677–2688

    Article  CAS  Google Scholar 

  137. Hong G et al (2015) Syringe injectable electronics: precise targeted delivery with quantitative input/output connectivity. Nano Lett 15:6979–6984

    Article  CAS  Google Scholar 

  138. Verhaagen J et al (2009) Neurotherapy: progress in restorative neuroscience and neurology, vol 175. Elsevier, Amsterdam

    Google Scholar 

  139. Deisseroth K (2011) Optogenetics. Nat Methods 8:26

    Article  CAS  Google Scholar 

  140. Kim R-H et al (2010) Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9:929

    Article  CAS  Google Scholar 

  141. Song YM et al (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497:95

    Article  CAS  Google Scholar 

  142. Lipomi DJ et al (2011) Stretchable organic solar cells. Adv Mater 23:1771–1775

    Article  CAS  Google Scholar 

  143. Bertolazzi S et al (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252

    Article  CAS  Google Scholar 

  144. Ko Y et al (2012) Hydrophobic nanoparticle-based nanocomposite films using in situ ligand exchange layer-by-layer assembly and their nonvolatile memory applications. ACS Nano 7:143–153

    Article  CAS  Google Scholar 

  145. Lee M-S et al (2013) High-performance, transparent, and stretchable electrodes using graphene–metal nanowire hybrid structures. Nano Lett 13:2814–2821

    Article  CAS  Google Scholar 

  146. Choi S et al (2015) Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9:6626–6633

    Article  CAS  Google Scholar 

  147. Zaric M et al (2013) Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano 7:2042–2055

    Article  CAS  Google Scholar 

  148. Yu J et al (2015) Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci 112:8260–8265

    Article  CAS  Google Scholar 

  149. Zhong J et al (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280

    Article  CAS  Google Scholar 

  150. Wang S et al (2012) Organic field-effect transistors based on highly ordered single polymer fibers. Adv Mater 24:417–420

    Article  CAS  Google Scholar 

  151. Müller C et al (2011) Woven electrochemical transistors on silk fibers. Adv Mater 23:898–901

    Article  CAS  Google Scholar 

  152. Lee JB, Subramanian V (2005) Weave patterned organic transistors on fiber for E-textiles. IEEE Trans Electron Devices 52:269–275

    Article  CAS  Google Scholar 

  153. Hamedi M et al (2009) Fiber-embedded electrolyte-gated field-effect transistors for e-textiles. Adv Mater 21:573–577

    Article  CAS  Google Scholar 

  154. Locher I et al (2006) Design and characterization of purely textile patch antennas. IEEE Trans Adv Packag 29:777–788

    Article  Google Scholar 

  155. Salvado R et al (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857

    Article  Google Scholar 

  156. Cottet D et al (2003) Electrical characterization of textile transmission lines. IEEE Trans Adv Packag 26:182–190

    Article  Google Scholar 

  157. Wang Z et al (2012) Embroidered conductive fibers on polymer composite for conformal antennas. IEEE Trans Antennas Propag 60:4141–4147

    Article  Google Scholar 

  158. Zeng W et al (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Article  CAS  Google Scholar 

  159. Someya T et al (2004) A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci U S A 101:9966–9970

    Article  CAS  Google Scholar 

  160. Chun K-Y et al (2013) Free-standing nanocomposites with high conductivity and extensibility. Nanotechnology 24:165401

    Article  CAS  Google Scholar 

  161. Stoyanov H et al (2013) Soft conductive elastomer materials for stretchable electronics and voltage controlled artificial muscles. Adv Mater 25:578–583

    Article  CAS  Google Scholar 

  162. Teng C et al (2013) Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT: PSS composite conductors. RSC Adv 3:7219–7223

    Article  CAS  Google Scholar 

  163. Zhu S et al (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  CAS  Google Scholar 

  164. Lacour SP et al (2004) An elastically stretchable TFT circuit. IEEE Electron Device Lett 25:792–794

    Article  Google Scholar 

  165. Wakuda D, Suganuma K (2011) Stretchable fine fiber with high conductivity fabricated by injection forming. Appl Phys Lett 98:33

    Article  CAS  Google Scholar 

  166. Rogers JA, Huang Y (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci U S A 106(27):10875–10876. Proc Natl Acad Sci U S A 106:16889 (2009)

    Article  Google Scholar 

  167. Van Der Sluis O et al (2010) Stretching-induced interconnect delamination in stretchable electronic circuits. J Phys D Appl Phys 44:034008

    Article  CAS  Google Scholar 

  168. Xu F et al (2010) Controlled 3D buckling of silicon nanowires for stretchable electronics. ACS Nano 5:672–678

    Article  CAS  Google Scholar 

  169. Song J et al (2009) Mechanics of noncoplanar mesh design for stretchable electronic circuits. J Appl Phys 105:123516

    Article  CAS  Google Scholar 

  170. Locher I, Tröster G (2008) Enabling technologies for electrical circuits on a woven monofilament hybrid fabric. Text Res J 78:583–594

    Article  CAS  Google Scholar 

  171. Li Q, Tao X (2011) A stretchable knitted interconnect for three-dimensional curvilinear surfaces. Text Res J 81:1171–1182

    Article  CAS  Google Scholar 

  172. Cao W (2013) Fabrication and modeling of stretchable conductors for traumatic brain injury research. Princeton University, Princeton

    Google Scholar 

  173. Hamedi M et al (2007) Towards woven logic from organic electronic fibres. Nat Mater 6:357

    Article  CAS  Google Scholar 

  174. De Rossi D (2007) Electronic textiles: A logical step. Nat Mater 6:328

    Article  CAS  Google Scholar 

  175. Xu Z et al (2013) Highly electrically conductive ag-doped graphene fibers as stretchable conductors. Adv Mater 25:3249–3253

    Article  CAS  Google Scholar 

  176. Jalili R et al (2011) One-step wet-spinning process of poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) fibers and the origin of higher electrical conductivity. Adv Funct Mater 21:3363–3370

    Article  CAS  Google Scholar 

  177. Takei K et al (2015) Toward flexible and wearable human-interactive health-monitoring devices. Adv Healthc Mater 4:487–500

    Article  CAS  Google Scholar 

  178. Schwartz G et al (2013) Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun 4:1859

    Article  CAS  Google Scholar 

  179. Digiglio P et al (2014) Microflotronic arterial tonometry for continuous wearable non-invasive hemodynamic monitoring. Ann Biomed Eng 42:2278–2288

    Article  Google Scholar 

  180. Wang C et al (2016) Carbonized silk fabric for ultrastretchable, highly sensitive, and wearable strain sensors. Adv Mater 28:6640–6648

    Article  CAS  Google Scholar 

  181. Dagdeviren C et al (2014) Conformable amplified lead zirconate titanate sensors with enhanced piezoelectric response for cutaneous pressure monitoring. Nat Commun 5:4496

    Article  CAS  Google Scholar 

  182. Choong CL et al (2014) Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array. Adv Mater 26:3451–3458

    Article  CAS  Google Scholar 

  183. Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:84–89

    Article  CAS  Google Scholar 

  184. Takei K et al (2014) Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proc Natl Acad Sci 111:1703–1707

    Article  CAS  Google Scholar 

  185. Leleux P et al (2014) Ionic liquid gel-assisted electrodes for long-term cutaneous recordings. Adv Healthc Mater 3:1377–1380

    Article  CAS  Google Scholar 

  186. Lochner CM et al (2014) All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5:5745

    Article  CAS  Google Scholar 

  187. Corbishley P, Rodríguez-Villegas E (2008) Breathing detection: towards a miniaturized, wearable, battery-operated monitoring system. Biomed Eng IEEE Trans 55:196–204

    Article  Google Scholar 

  188. Mimoz O et al (2012) Accuracy of respiratory rate monitoring using a non-invasive acoustic method after general anaesthesia. Br J Anaesth 108:872–875

    Article  CAS  Google Scholar 

  189. Folke M et al (2003) Critical review of non-invasive respiratory monitoring in medical care. Med Biol Eng Comput 41:377–383

    Article  CAS  Google Scholar 

  190. Huang C-T et al (2008) A wearable yarn-based piezo-resistive sensor. Sensors Actuators A Phys 141:396–403

    Article  CAS  Google Scholar 

  191. Atalay O et al (2015) Weft-knitted strain sensor for monitoring respiratory rate and its electro-mechanical modeling. IEEE Sensors J 15:110–122

    Article  Google Scholar 

  192. Wijesiriwardana R (2006) Inductive fiber-meshed strain and displacement transducers for respiratory measuring systems and motion capturing systems. IEEE Sensors J 6:571–579

    Article  Google Scholar 

  193. Li Y et al (2015) From cotton to wearable pressure sensor. J Mater Chem A 3:2181–2187

    Article  CAS  Google Scholar 

  194. Kundu SK et al (2013) A wearable capacitive sensor for monitoring human respiratory rate. Jpn J Appl Phys 52:04CL05

    Article  CAS  Google Scholar 

  195. Yamada T et al (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  CAS  Google Scholar 

  196. Rajala S, Lekkala J (2012) Film-type sensor materials PVDF and EMFi in measurement of cardiorespiratory signals – a review. IEEE Sensors J 12:439–446

    Article  CAS  Google Scholar 

  197. Iguchi S et al (2007) A flexible and wearable biosensor for tear glucose measurement. Biomed Microdevices 9:603–609

    Article  CAS  Google Scholar 

  198. Kudo H et al (2006) A flexible and wearable glucose sensor based on functional polymers with soft-MEMS techniques. Biosens Bioelectron 22:558–562

    Article  CAS  Google Scholar 

  199. Liao Y-T et al (2012) A 3-μW CMOS glucose sensor for wireless contact-lens tear glucose monitoring. IEEE J Solid State Circuits 47:335–344

    Google Scholar 

  200. Bandodkar AJ et al (2014) Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal Chem 87:394–398

    Article  CAS  Google Scholar 

  201. You X, Pak JJ (2014) Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sensors Actuators B Chem 202:1357–1365

    Article  CAS  Google Scholar 

  202. Li R et al (2014) Microflotronics: a flexible, transparent, pressure-sensitive microfluidic film. Adv Funct Mater 24:6195–6203

    Article  CAS  Google Scholar 

  203. Wang X et al (2014) Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv Mater 26:1336–1342

    Article  CAS  Google Scholar 

  204. Avolio AP et al (2009) Arterial blood pressure measurement and pulse wave analysis – their role in enhancing cardiovascular assessment. Physiol Meas 31:R1

    Article  Google Scholar 

  205. Nguyen N-T et al (2002) MEMS-micropumps: a review. J Fluids Eng 124:384–392

    Article  Google Scholar 

  206. Alahi MEE et al (2018) A temperature-compensated graphene sensor for nitrate monitoring in real-time application. Sensors Actuators A Phys 269:79–90

    Article  CAS  Google Scholar 

  207. Nag A, Mukhopadhyay SC (2018) Fabrication and implementation of printed sensors for taste sensing applications. Sensors Actuators A Phys 269:53–61

    Article  CAS  Google Scholar 

  208. Nag A et al (2018) Strain induced graphite/PDMS sensors for biomedical applications. Sensors Actuators A 271:257–269

    Article  CAS  Google Scholar 

  209. Nag A et al (2018) Performance analysis of flexible printed sensors for robotic arm applications. Sensors Actuators A: Phys 276:226–236

    Article  CAS  Google Scholar 

  210. Nag A et al (2017) Sensing system for salinity testing using laser-induced graphene sensors. Sensors Actuators A: Phys 251:148–155

    Article  CAS  Google Scholar 

  211. Nag A, et al. (2017) Urinary incontinence monitoring system using laser-induced graphene sensors. In: SENSORS, 2017 IEEE. pp 1–3

    Google Scholar 

  212. Nag A, et al. (2017) Influence of temperature and humidity on carbon based printed flexible sensors. In: Sensing technology (ICST), 2017 eleventh international conference on. pp 1–6

    Google Scholar 

  213. Nag A et al (2016) Flexible carbon nanotube nanocomposite sensor for multiple physiological parameter monitoring. Sensors Actuators A Phys 251:148–155

    Article  CAS  Google Scholar 

  214. Nag A, et al. (2016) Transparent biocompatible sensor patches for touch sensitive prosthetic limbs. In: Sensing technology (ICST), 2016 10th international conference on. pp 1–6

    Google Scholar 

  215. Wearable device shipments. Available: https://www.tractica.com/newsroom/press-releases/wearable-device-shipments-to-reach-430-million-units-annually-by-2022/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhas Chandra Mukhopadhyay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nag, A., Mukhopadhyay, S.C. (2019). Nanoparticles-Based Flexible Wearable Sensors for Health Monitoring Applications. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Environment, Health, and Safety. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59600-5_9

Download citation

Publish with us

Policies and ethics