Skip to main content

Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment

  • Chapter
  • First Online:
Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy

Abstract

Magnetic nanoparticles (MNPs) – especially single-domain-based superparamagnetic (SPM) nanoparticles in ferrofluid form – are primarily utilized in magnetic fluid hyperthermia (MFH)-based thermotherapy for cancer treatment applications due to their following advantages: (i) unique magnetic properties, (ii) better chemical stability, and (iii) high cytocompatibility. In MFH therapy, the cancer cells are quickly heated to the therapeutic temperatures of ~42–45 °C using the MNPs on exposure to externally applied alternating magnetic fields (AMFs), where the induced heat might damage the consequent proliferation of cancer cells by promoting apoptosis/mitotic death and thus preventing the tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin MM, Kim H-H, Kim H et al (2010) Iron oxide-based nanomagnets in nanomedicine: fabrication and applications. Nano Rev 1

    Google Scholar 

  2. Ali A, Zafar H, Zia M et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67. https://doi.org/10.2147/NSA.S99986

    Article  CAS  Google Scholar 

  3. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:R167–R181. https://doi.org/10.1088/0022-3727/36/13/201

    Article  CAS  Google Scholar 

  4. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1:482–501. https://doi.org/10.1002/smll.200500006

    Article  CAS  Google Scholar 

  5. Bedanta S, Kleemann W (2009) Supermagnetism. J Phys D Appl Phys 42:013001. https://doi.org/10.1088/0022-3727/42/1/013001

    Article  CAS  Google Scholar 

  6. Klostergaard J, Seeney CE (2012) Magnetic nanovectors for drug delivery. Nanomedicine 8:S37–S50

    Article  CAS  Google Scholar 

  7. Sheng-nan S, Chao W, Zan-zan Z (2014) Magnetic iron oxide nanoparticles: synthesis and surface coating techniques for biomedical applications. Chinese Phys B 23:1–19. https://doi.org/10.1088/1674-1056/23/3/037503

    Article  CAS  Google Scholar 

  8. Tapeinos C (2018) Magnetic nanoparticles and their bioapplications. In: Parinov IA, Chang S-H, Topolov VY (eds) Smart nanoparticles for biomedicine. Elsevier, Cham, pp 131–142

    Chapter  Google Scholar 

  9. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:144. https://doi.org/10.1186/1556-276X-7-144

    Article  CAS  Google Scholar 

  10. Mody VV, Singh A, Wesley B (2013) Basics of magnetic nanoparticles for their application in the field of magnetic fluid hyperthermia. Eur J Nanomedicine 5:11–21. https://doi.org/10.1515/ejnm-2012-0008

    Article  CAS  Google Scholar 

  11. Cullity BD, Graham CD (2011) Introduction to magnetic materials, 2nd edn. Wiley, Hoboken

    Google Scholar 

  12. Carlos L, Jafelicci M, Beck W (2011) Magnetic and multifunctional magnetic nanoparticles in nanomedicine: challenges and trends in synthesis and surface engineering for diagnostic and therapy applications. In: Biomedical engineering, trends in materials science. InTech, pp 397–424

    Google Scholar 

  13. Lee N, Hyeon T (2012) Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 41:2575. https://doi.org/10.1039/c1cs15248c

    Article  CAS  Google Scholar 

  14. Corot C, Robert P, Idée JM, Port M (2006) Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev 58:1471–1504. https://doi.org/10.1016/j.addr.2006.09.013

    Article  CAS  Google Scholar 

  15. Wang Y-XJ, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331. https://doi.org/10.1007/s003300100908

    Article  CAS  Google Scholar 

  16. Laurent S, Dutz S, Häfeli UO, Mahmoudi M (2011) Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interf Sci 166:8–23. https://doi.org/10.1016/j.cis.2011.04.003

    Article  CAS  Google Scholar 

  17. Pennacchioli E, Fiore M, Gronchi A (2009) Hyperthermia as an adjunctive treatment for soft-tissue sarcoma. Expert Rev Anticancer Ther 9:199–210. https://doi.org/10.1586/14737140.9.2.199

    Article  CAS  Google Scholar 

  18. Chen H, Zhang W, Zhu G et al (2017) Rethinking cancer nanotheranostics. Nat Rev Mater 2:17024. https://doi.org/10.1038/natrevmats.2017.24

    Article  CAS  Google Scholar 

  19. Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496:191–218. https://doi.org/10.1016/j.ijpharm.2015.10.058

    Article  CAS  Google Scholar 

  20. Kitture R, Ghosh S, Kulkarni P et al (2012) Fe3O4-citrate-curcumin: promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia. J Appl Phys 111:064702. https://doi.org/10.1063/1.3696001

    Article  CAS  Google Scholar 

  21. Ahmed M, Douek M (2013) The role of magnetic nanoparticles in the localization and treatment of breast cancer. Biomed Res Int 2013:281230. https://doi.org/10.1155/2013/281230

    Article  CAS  Google Scholar 

  22. Cheng Y, Morshed RA, Auffinger B et al (2014) Multifunctional nanoparticles for brain tumor imaging and therapy. Adv Drug Deliv Rev 66:42–57. https://doi.org/10.1016/j.addr.2013.09.006

    Article  CAS  Google Scholar 

  23. Torchilin VP (2014) Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov 13:813–827. https://doi.org/10.1038/nrd4333

    Article  CAS  Google Scholar 

  24. Deatsch AE, Evans BA (2014) Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater 354:163–172. https://doi.org/10.1016/j.jmmm.2013.11.006

    Article  CAS  Google Scholar 

  25. Kumar CSSR, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808. https://doi.org/10.1016/j.addr.2011.03.008

    Article  CAS  Google Scholar 

  26. McCarthy JR, Weissleder R (2008) Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 60:1241–1251. https://doi.org/10.1016/j.addr.2008.03.014

    Article  CAS  Google Scholar 

  27. Verma J, Lal S, Van Noorden CJF (2014) Nanoparticles for hyperthermic therapy: synthesis strategies and applications in glioblastoma. Int J Nanomedicine 9:2863–2877

    Google Scholar 

  28. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110. https://doi.org/10.1021/cr068445e

    Article  CAS  Google Scholar 

  29. Hasany SF, Abdurahman NH, Sunarti AR, Jose R (2013) Magnetic Iron oxide nanoparticles: chemical synthesis and applications review. Curr Nanosci 9:561–575. https://doi.org/10.2174/15734137113099990085

    Article  CAS  Google Scholar 

  30. Wu W, Wu Z, Yu T et al (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16:023501. https://doi.org/10.1088/1468-6996/16/2/023501

    Article  CAS  Google Scholar 

  31. Hedayatnasab Z, Abnisa F, Daud WMAW (2017) Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application. Mater Des 123:174–196. https://doi.org/10.1016/j.matdes.2017.03.036

    Article  CAS  Google Scholar 

  32. Hasany SF, Ahmed I, Rajan J, Rehman A (2013) Systematic review of the preparation techniques of Iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158. https://doi.org/10.5923/j.nn.20120206.01

    Article  CAS  Google Scholar 

  33. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304. https://doi.org/10.1016/j.addr.2009.11.002

    Article  CAS  Google Scholar 

  34. Patil U, Adireddy S, Jaiswal A et al (2015) In vitro/in vivo toxicity evaluation and quantification of Iron oxide nanoparticles. Int J Mol Sci 16:24417–24450. https://doi.org/10.3390/ijms161024417

    Article  CAS  Google Scholar 

  35. Périgo EA, Hemery G, Sandre O et al (2015) Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2:041302. https://doi.org/10.1063/1.4935688

    Article  CAS  Google Scholar 

  36. Maity D, Kandasamy G, Sudame A (2017) Superparamagnetic Iron Oxide Nanoparticles (SPIONs) based magnetic hyperthermia: a promising therapy in cancer treatment. In: Berhardt LV (ed) Advances in medicine and biology, 117th edn. Nova Science Publishers, pp 99–160

    Google Scholar 

  37. Praetorius NP, Mandal TK (2007) Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul 1:37–51. https://doi.org/10.2174/187221107779814104

    Article  CAS  Google Scholar 

  38. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630. https://doi.org/10.1021/cr400544s

    Article  CAS  Google Scholar 

  39. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878. https://doi.org/10.1021/cr300068p

    Article  CAS  Google Scholar 

  40. Amstad E, Textor M, Reimhult E (2011) Stabilization and functionalization of iron oxide nanoparticles for biomedical applications. Nanoscale 3:2819. https://doi.org/10.1039/c1nr10173k

    Article  CAS  Google Scholar 

  41. Mahmoudi M, Sant S, Wang B et al (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46. https://doi.org/10.1016/j.addr.2010.05.006

    Article  CAS  Google Scholar 

  42. Liu C, Zou B, Rondinone AJ, Zhang ZJ (2000) Chemical control of superparamagnetic properties of magnesium and cobalt spinel ferrite nanoparticles through atomic level magnetic couplings. J Am Chem Soc 122:6263–6267. https://doi.org/10.1021/ja000784g

    Article  CAS  Google Scholar 

  43. Kharisov BI, Dias HVR, Kharissova OV (2014) Mini-review: ferrite nanoparticles in the catalysis. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  CAS  Google Scholar 

  44. Tatarchuk T, Bououdina M, Judith Vijaya J, John Kennedy L (2017) Spinel ferrite nanoparticles: synthesis, crystal structure, properties, and perspective applications. In: Springer Proceedings in Physics. pp 305–325

    Google Scholar 

  45. Kefeni KK, Msagati TAM, Mamba BB (2017) Ferrite nanoparticles: synthesis, characterisation and applications in electronic device. Mater Sci Eng B Solid-State Mater Adv Technol 215:37–55. https://doi.org/10.1016/j.mseb.2016.11.002

    Article  CAS  Google Scholar 

  46. Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperth 18:267–284. https://doi.org/10.1080/02656730110108785

    Article  CAS  Google Scholar 

  47. Maureen L, Awalpreet S, Kaur P et al (2016) Hyperthermia using nanoparticles – promises and pitfalls. Int J Hyperth 00:1–13. https://doi.org/10.3109/02656736.2015.1120889

    Article  CAS  Google Scholar 

  48. Krishnan KM (2010) Biomedical nanomagnetics: a spin through possibilities in imaging, diagnostics, and therapy. IEEE Trans Magn 46:2523–2558. https://doi.org/10.1109/TMAG.2010.2046907

    Article  CAS  Google Scholar 

  49. Kita E, Oda T, Kayano T et al (2010) Ferromagnetic nanoparticles for magnetic hyperthermia and thermoablation therapy. J Phys D Appl Phys 43:474011. https://doi.org/10.1088/0022-3727/43/47/474011

    Article  CAS  Google Scholar 

  50. Obaidat I, Issa B, Haik Y (2015) Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nano 5:63–89. https://doi.org/10.3390/nano5010063

    Article  CAS  Google Scholar 

  51. Shaterabadi Z, Nabiyouni G, Soleymani M (2018) Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Prog Biophys Mol Biol 133:9–19. https://doi.org/10.1016/j.pbiomolbio.2017.10.001

    Article  CAS  Google Scholar 

  52. Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS (2016) Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog Nat Sci Mater Int 26:440–448. https://doi.org/10.1016/j.pnsc.2016.09.004

    Article  CAS  Google Scholar 

  53. Shah RR, Davis TP, Glover AL et al (2015) Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia. J Magn Magn Mater 387:96–106. https://doi.org/10.1016/j.jmmm.2015.03.085

    Article  CAS  Google Scholar 

  54. Kozissnik B, Bohorquez AC, Dobson J, Rinaldi C (2013) Magnetic fluid hyperthermia: advances, challenges, and opportunity. Int J Hyperth 29:706–714. https://doi.org/10.3109/02656736.2013.837200

    Article  Google Scholar 

  55. Kallumadil M, Tada M, Nakagawa T et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–1513. https://doi.org/10.1016/j.jmmm.2009.02.075

    Article  CAS  Google Scholar 

  56. Hong-Ying S, Chang-Qiang W, Dan-Yang L, Hua A (2015) Self-assembled superparamagnetic nanoparticles as MRI contrast agents – a review. Chinese Phys B 24:127506. https://doi.org/10.1088/1674-1056/24/12/127506

    Article  CAS  Google Scholar 

  57. Kim J, Piao Y, Hyeon T (2009) Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev 38:372–390. https://doi.org/10.1039/b709883a

    Article  CAS  Google Scholar 

  58. Zhang W, Wu C, Silva SRP (2018) Proposed use of self-regulating temperature nanoparticles for cancer therapy. Expert Rev Anticancer Ther 18:723–725. https://doi.org/10.1080/14737140.2018.1483242

    Article  CAS  Google Scholar 

  59. Jones CF, Grainger DW (2009) In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev 61:438–456. https://doi.org/10.1016/j.addr.2009.03.005

    Article  CAS  Google Scholar 

  60. Blanco-Andujar C, Teran FJ, Ortega D (2018) Current outlook and perspectives on nanoparticle-mediated magnetic hyperthermia. In: Iron Oxide nanoparticles for biomedical applications. Elsevier, pp 197–245

    Google Scholar 

  61. Faraji M, Yamini Y, Rezaee M (2010) Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications. J Iran Chem Soc 7:1–37

    Article  CAS  Google Scholar 

  62. Maity D, Ding J, Xue J-M (2008) Synthesis of magnetite nanoparticles by thermal decomposition: time, temperature, surfactant and solvent effects. Funct Mater Lett 01:189–193. https://doi.org/10.1142/S1793604708000381

    Article  CAS  Google Scholar 

  63. Maity D, Choo SG, Yi J et al (2009) Synthesis of magnetite nanoparticles via a solvent-free thermal decomposition route. J Magn Magn Mater 321:1256–1259. https://doi.org/10.1016/j.jmmm.2008.11.013

    Article  CAS  Google Scholar 

  64. Chandrasekharan P, Maity D, Yong CX et al (2011) Vitamin E (d-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials 32:5663–5672. https://doi.org/10.1016/j.biomaterials.2011.04.037

    Article  CAS  Google Scholar 

  65. Maity D, Pradhan P, Chandrasekharan P et al (2011) Synthesis of hydrophilic superparamagnetic magnetite nanoparticles via thermal decomposition of Fe(acac)3 in 80 Vol% TREG + 20 Vol% TREM. J Nanosci Nanotechnol 11:2730–2734. https://doi.org/10.1166/jnn.2011.2693

    Article  CAS  Google Scholar 

  66. Maity D, Ding J, Xue J-M (2009) One-pot synthesis of hydrophilic and hydrophobic Ferrofluid. Int J Nanosci 08:65–69. https://doi.org/10.1142/S0219581X09005748

    Article  CAS  Google Scholar 

  67. Maity D, Chandrasekharan P, Si-Shen F et al (2010) Polyol-based synthesis of hydrophilic magnetite nanoparticles. J Appl Phys 107:09B310. https://doi.org/10.1063/1.3355898

    Article  Google Scholar 

  68. Tenório-Neto ET, Jamshaid T, Eissa M et al (2015) TGA and magnetization measurements for determination of composition and polymer conversion of magnetic hybrid particles. Polym Adv Technol 26:1199–1208. https://doi.org/10.1002/pat.3562

    Article  CAS  Google Scholar 

  69. Maity D, Ding J (2011) Single step synthesis of hydrophobic and hydrophilic nanoparticles via thermal decomposition. Int J Nanosci 10:943–947. https://doi.org/10.1142/S0219581X11008745

    Article  CAS  Google Scholar 

  70. Maity D, Zoppellaro G, Sedenkova V et al (2012) Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chem Commun 48:11398. https://doi.org/10.1039/c2cc35515a

    Article  CAS  Google Scholar 

  71. Tan YF, Chandrasekharan P, Maity D et al (2011) Multimodal tumor imaging by iron oxides and quantum dots formulated in poly (lactic acid)-d-alpha-tocopheryl polyethylene glycol 1000 succinate nanoparticles. Biomaterials 32:2969–2978. https://doi.org/10.1016/j.biomaterials.2010.12.055

    Article  CAS  Google Scholar 

  72. Mi Y, Liu X, Zhao J et al (2012) Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers. Biomaterials 33:7519–7529. https://doi.org/10.1016/j.biomaterials.2012.06.100

    Article  CAS  Google Scholar 

  73. Prashant C, Dipak M, Yang CT et al (2010) Superparamagnetic iron oxide – loaded poly (lactic acid)-d-alpha-tocopherol polyethylene glycol 1000 succinate copolymer nanoparticles as MRI contrast agent. Biomaterials 31:5588–5597. https://doi.org/10.1016/j.biomaterials.2010.03.070

    Article  CAS  Google Scholar 

  74. Maity D, Kale SN, Kaul-Ghanekar R et al (2009) Studies of magnetite nanoparticles synthesized by thermal decomposition of iron (III) acetylacetonate in tri(ethylene glycol). J Magn Magn Mater 321:3093–3098. https://doi.org/10.1016/j.jmmm.2009.05.020

    Article  CAS  Google Scholar 

  75. Muthukumaran T, Gnanaprakash G, Philip J (2012) Synthesis of stable magnetic Nanofluids of different particle sizes. J Nanofluids 1:85–92. https://doi.org/10.1166/jon.2012.1006

    Article  CAS  Google Scholar 

  76. Kedar U, Phutane P, Shidhaye S, Kadam V (2010) Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med 6:714–729. https://doi.org/10.1016/j.nano.2010.05.005

    Article  CAS  Google Scholar 

  77. Maity D, Chandrasekharan P, Yang C-T et al (2010) Facile synthesis of water-stable magnetite nanoparticles for clinical MRI and magnetic hyperthermia applications. Nanomedicine 5:1571–1584. https://doi.org/10.2217/nnm.10.77

    Article  CAS  Google Scholar 

  78. Kandasamy G, Sudame A, Luthra T et al (2018) Functionalized hydrophilic superparamagnetic Iron oxide nanoparticles for magnetic fluid hyperthermia application in liver Cancer treatment. ACS Omega 3:3991–4005. https://doi.org/10.1021/acsomega.8b00207

    Article  CAS  Google Scholar 

  79. Maity D, Chandrasekharan P, Pradhan P et al (2011) Novel synthesis of superparamagnetic magnetite nanoclusters for biomedical applications. J Mater Chem 21:14717. https://doi.org/10.1039/c1jm11982f

    Article  CAS  Google Scholar 

  80. Hayashi K, Nakamura M, Sakamoto W et al (2013) Superparamagnetic nanoparticle clusters for cancer theranostics combining magnetic resonance imaging and hyperthermia treatment. Theranostics 3:366–376. https://doi.org/10.7150/thno.5860

    Article  CAS  Google Scholar 

  81. Thomas R, Park I-K, Jeong YY (2013) Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer. Int J Mol Sci 14:15910–15930. https://doi.org/10.3390/ijms140815910

    Article  CAS  Google Scholar 

  82. Baskar G, Ravi M, Panda JJ et al (2017) Efficacy of dipeptide-coated magnetic nanoparticles in lung Cancer models under pulsed electromagnetic field. Cancer Investig 0:1–12. https://doi.org/10.1080/07357907.2017.1318894

    Article  CAS  Google Scholar 

  83. Lahiri BB, Muthukumaran T, Philip J (2016) Magnetic hyperthermia in phosphate coated iron oxide nanofluids. J Magn Magn Mater 407:101–113. https://doi.org/10.1016/j.jmmm.2016.01.044

    Article  CAS  Google Scholar 

  84. Rodríguez-Luccioni HL, Latorre-Esteves M, Méndez-Vega J et al (2011) Enhanced reduction in cell viability by hyperthermia induced by magnetic nanoparticles. Int J Nanomedicine 6:373–380

    Google Scholar 

  85. Lemal P, Geers C, Rothen-Rutishauser B et al (2017) Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. Mater Today Proc 4:S107–S117. https://doi.org/10.1016/j.matpr.2017.09.175

    Article  Google Scholar 

  86. Blanco-Andujar C, Ortega D, Southern P et al (2015) High performance multi-core iron oxide nanoparticles for magnetic hyperthermia: microwave synthesis, and the role of core-to-core interactions. Nanoscale 7:1768–1775. https://doi.org/10.1039/C4NR06239F

    Article  CAS  Google Scholar 

  87. Cervadoro A, Giverso C, Pande R et al (2013) Design maps for the Hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 8:e57332. https://doi.org/10.1371/journal.pone.0057332

    Article  CAS  Google Scholar 

  88. Gonzales-Weimuller M, Zeisberger M, Krishnan KM (2009) Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater 321:1947–1950. https://doi.org/10.1016/j.jmmm.2008.12.017

    Article  CAS  Google Scholar 

  89. de la Presa P, Luengo Y, Multigner M et al (2012) Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610. https://doi.org/10.1021/jp310771p

    Article  CAS  Google Scholar 

  90. Bakoglidis KD, Simeonidis K, Sakellari D et al (2012) Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles. IEEE Trans Magn 48:1320–1323. https://doi.org/10.1109/TMAG.2011.2173474

    Article  CAS  Google Scholar 

  91. Tong S, Quinto CA, Zhang L et al (2017) Size-dependent heating of magnetic Iron oxide nanoparticles. ACS Nano 11:6808–6816. https://doi.org/10.1021/acsnano.7b01762

    Article  CAS  Google Scholar 

  92. Iacovita C, Florea A, Dudric R et al (2016) Small versus large iron oxidemagnetic nanoparticles: hyperthermia and cell uptake properties. Molecules 21:1–21. https://doi.org/10.3390/molecules21101357

    Article  CAS  Google Scholar 

  93. Khandhar AP, Ferguson RM, Krishnan KM (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:173–175. https://doi.org/10.1063/1.3556948

    Article  CAS  Google Scholar 

  94. Patsula V, Moskvin M, Dutz S, Horák D (2016) Size-dependent magnetic properties of iron oxide nanoparticles. J Phys Chem Solids 88:24–30. https://doi.org/10.1016/j.jpcs.2015.09.008

    Article  CAS  Google Scholar 

  95. Hugounenq P, Levy M, Alloyeau D et al (2012) Iron oxide monocrystalline Nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C 116:15702–15712. https://doi.org/10.1021/jp3025478

    Article  CAS  Google Scholar 

  96. Lartigue L, Hugounenq P, Alloyeau D et al (2012) Cooperative organization in iron oxide multi-core nanoparticles potentiates their efficiency as heating mediators and MRI contrast agents. ACS Nano 6:10935–10949. https://doi.org/10.1021/nn304477s

    Article  CAS  Google Scholar 

  97. Guardia P, Di Corato R, Lartigue L et al (2012) Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano 6:3080–3091. https://doi.org/10.1021/nn2048137

    Article  CAS  Google Scholar 

  98. Martinez-Boubeta C, Simeonidis K, Makridis A et al (2013) Learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications. Sci Rep 3:1652

    Article  Google Scholar 

  99. Lv Y, Yang Y, Fang J et al (2015) Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Adv 5:76764–76771. https://doi.org/10.1039/C5RA12558H

    Article  CAS  Google Scholar 

  100. Mohapatra J, Mitra A, Aslam M, Bahadur D (2015) Octahedral-shaped Fe3O4 nanoparticles with enhanced specific absorption rate and R2 Relaxivity. IEEE Trans Magn 51:3–6. https://doi.org/10.1109/TMAG.2015.2439213

    Article  CAS  Google Scholar 

  101. Nemati Z, Alonso J, Martinez LM et al (2016) Enhanced magnetic hyperthermia in Iron oxide Nano-octopods: size and anisotropy effects. J Phys Chem C 120:8370–8379. https://doi.org/10.1021/acs.jpcc.6b01426

    Article  CAS  Google Scholar 

  102. Das R, Alonso J, Nemati Porshokouh Z et al (2016) Tunable high aspect ratio Iron oxide Nanorods for enhanced hyperthermia. J Phys Chem C 120:10086–10093. https://doi.org/10.1021/acs.jpcc.6b02006

    Article  CAS  Google Scholar 

  103. Nemati Z, Salili SM, Alonso J et al (2017) Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? J Alloys Compd 714:709–714. https://doi.org/10.1016/j.jallcom.2017.04.211

    Article  CAS  Google Scholar 

  104. Nemati Z, Alonso J, Rodrigo I et al (2018) Improving the heating efficiency of Iron oxide nanoparticles by tuning their shape and size. J Phys Chem C 122:2367–2381. https://doi.org/10.1021/acs.jpcc.7b10528

    Article  CAS  Google Scholar 

  105. Regmi R, Black C, Sudakar C et al (2009) Effects of fatty acid surfactants on the magnetic and magnetohydrodynamic properties of ferrofluids. J Appl Phys 106:113902. https://doi.org/10.1063/1.3259382

    Article  CAS  Google Scholar 

  106. Filippousi M, Angelakeris M, Katsikini M et al (2014) Surfactant effects on the structural and magnetic properties of Iron oxide nanoparticles. J Phys Chem C 118:16209–16217. https://doi.org/10.1021/jp5037266

    Article  CAS  Google Scholar 

  107. Soares IP, Lochte F, Echeverria C et al (2015) Thermal and magnetic properties of iron oxide colloids: influence of surfactants. Nanotechnology 26:425704. https://doi.org/10.1088/0957-4484/26/42/425704

    Article  CAS  Google Scholar 

  108. Liu XL, Fan HM, Yi JB et al (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235. https://doi.org/10.1039/c2jm30472d

    Article  CAS  Google Scholar 

  109. Mohammad F, Balaji G, Weber A et al (2010) Influence of gold Nanoshell on hyperthermia of super paramagnetic Iron oxide nanoparticles (SPIONs). J Phys Chem C Nanomater Interfaces 114:19194–19201. https://doi.org/10.1021/jp105807r

    Article  CAS  Google Scholar 

  110. Barick KC, Hassan PA (2012) Glycine passivated Fe3O4 nanoparticles for thermal therapy. J Colloid Interface Sci 369:96–102. https://doi.org/10.1016/j.jcis.2011.12.008

    Article  CAS  Google Scholar 

  111. Cheraghipour E, Javadpour S (2013) Cationic albumin-conjugated magnetite nanoparticles, novel candidate for hyperthermia cancer therapy. Int J Hyperth 29:511–519. https://doi.org/10.3109/02656736.2013.803605

    Article  CAS  Google Scholar 

  112. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF et al (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79. https://doi.org/10.1016/j.jmmm.2014.04.001

    Article  CAS  Google Scholar 

  113. Darwish MSA, Stibor I (2016) Pentenoic acid-stabilized magnetic nanoparticles for nanomedicine applications. J Dispers Sci Technol 37:1793–1798. https://doi.org/10.1080/01932691.2016.1140584

    Article  CAS  Google Scholar 

  114. Saeedi M, Vahidi O, Bonakdar S (2017) Synthesis and characterization of glycyrrhizic acid coated iron oxide nanoparticles for hyperthermia applications. Mater Sci Eng C 77:1060–1067. https://doi.org/10.1016/j.msec.2017.04.015

    Article  CAS  Google Scholar 

  115. Kandasamy G, Sudame A, Bhati P et al (2018) Systematic magnetic fluid hyperthermia studies of carboxyl functionalized hydrophilic superparamagnetic iron oxide nanoparticles based ferrofluids. J Colloid Interface Sci 514:534–543. https://doi.org/10.1016/j.jcis.2017.12.064

    Article  CAS  Google Scholar 

  116. Kandasamy G, Sudame A, Bhati P et al (2018) Systematic investigations on heating effects of carboxyl-amine functionalized superparamagnetic iron oxide nanoparticles (SPIONs) based ferrofluids for in vitro cancer hyperthermia therapy. J Mol Liq 256:224–237. https://doi.org/10.1016/j.molliq.2018.02.029

    Article  CAS  Google Scholar 

  117. Kandasamy G, Sudame A, Maity D (2017) ATA and TA coated superparamagnetic iron oxide nanoparticles: promising candidates for magnetic hyperthermia therapy. Adv Mater Lett 8:873–877. https://doi.org/10.5185/amlett.2017.1730

    Article  CAS  Google Scholar 

  118. Cruz MM, Ferreira LP, Ramos J et al (2017) Enhanced magnetic hyperthermia of CoFe2O4 and MnFe2O4 nanoparticles. J Alloys Compd 703:370–380. https://doi.org/10.1016/j.jallcom.2017.01.297

    Article  CAS  Google Scholar 

  119. Phong PT, Phuc NX, Nam PH et al (2018) Size-controlled heating ability of CoFe2O4 nanoparticles for hyperthermia applications. Phys B Condens Matter 531:30–34. https://doi.org/10.1016/j.physb.2017.12.010

    Article  CAS  Google Scholar 

  120. Psimadas D, Baldi G, Ravagli C et al (2014) Comparison of the magnetic, radiolabeling, hyperthermic and biodistribution properties of hybrid nanoparticles bearing CoFe2O4 and Fe3O4 metal cores. Nanotechnology 25:025101. https://doi.org/10.1088/0957-4484/25/2/025101

    Article  CAS  Google Scholar 

  121. Lee J-H, Jang J-T, Choi J-S et al (2011) Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat Nanotechnol 6:418–422. https://doi.org/10.1038/nnano.2011.95

    Article  CAS  Google Scholar 

  122. Noh SH, Na W, Jang JT et al (2012) Nanoscale magnetism control via surface and exchange anisotropy for optimized ferrimagnetic hysteresis. Nano Lett 12:3716–3721. https://doi.org/10.1021/nl301499u

    Article  CAS  Google Scholar 

  123. Robles J, Das R, Glassell M et al (2018) Exchange-coupled Fe3O4/CoFe2O4 nanoparticles for advanced magnetic hyperthermia. AIP Adv 8:056719. https://doi.org/10.1063/1.5007249

    Article  CAS  Google Scholar 

  124. Angelakeris M, Li ZA, Hilgendorff M et al (2015) Enhanced biomedical heat-triggered carriers via nanomagnetism tuning in ferrite-based nanoparticles. J Magn Magn Mater 381:179–187. https://doi.org/10.1016/j.jmmm.2014.12.069

    Article  CAS  Google Scholar 

  125. Bekovic M, Hamler A (2010) Determination of the heating effect of magnetic fluid in alternating magnetic field. IEEE Trans Magn 46:552–555. https://doi.org/10.1109/TMAG.2009.2033944

    Article  CAS  Google Scholar 

  126. Jović Orsini N, Babić-Stojić B, Spasojević V et al (2018) Magnetic and power absorption measurements on iron oxide nanoparticles synthesized by thermal decomposition of Fe(acac) 3. J Magn Magn Mater 449:286–296. https://doi.org/10.1016/j.jmmm.2017.10.053

    Article  CAS  Google Scholar 

  127. Hemery G, Keyes AC, Garaio E et al (2017) Tuning sizes, morphologies, and magnetic properties of Monocore versus multicore Iron oxide nanoparticles through the controlled addition of water in the polyol synthesis. Inorg Chem 56:8232–8243. https://doi.org/10.1021/acs.inorgchem.7b00956

    Article  CAS  Google Scholar 

  128. Cobianchi M, Guerrini A, Avolio M et al (2017) Experimental determination of the frequency and field dependence of specific loss power in magnetic fluid hyperthermia. J Magn Magn Mater 444:154–160. https://doi.org/10.1016/j.jmmm.2017.08.014

    Article  CAS  Google Scholar 

  129. Verde EL, Landi GT, Carrião MS et al (2012) Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes. AIP Adv 2. https://doi.org/10.1063/1.4739533

    Article  Google Scholar 

  130. Kuraica MM, Iskrenović P, Perić M et al (2018) External magnetic field influence on magnetite and cobalt-ferrite nano-particles in ferrofluid. Chem Pap 72:1535–1542. https://doi.org/10.1007/s11696-017-0380-8

    Article  CAS  Google Scholar 

  131. Andreu I, Natividad E, Solozábal L, Roubeau O (2015) Same magnetic nanoparticles, different heating behavior: influence of the arrangement and dispersive medium. J Magn Magn Mater 380:341–346. https://doi.org/10.1016/j.jmmm.2014.10.114

    Article  CAS  Google Scholar 

  132. Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I et al (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383. https://doi.org/10.1186/1556-276X-6-383

    Article  CAS  Google Scholar 

  133. Ludwig R, Stapf M, Dutz S et al (2014) Structural properties of magnetic nanoparticles determine their heating behavior – an estimation of the in vivo heating potential. Nanoscale Res Lett 9:602. https://doi.org/10.1186/1556-276X-9-602

    Article  CAS  Google Scholar 

  134. Cabrera D, Camarero J, Ortega D, Teran FJ (2015) Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia. J Nanopart Res 17. https://doi.org/10.1007/s11051-015-2921-9

  135. Etheridge ML, Hurley KR, Zhang J et al (2014) Accounting for biological aggregation in heating and imaging of magnetic nanoparticles. Technology 02:214–228. https://doi.org/10.1142/S2339547814500198

    Article  Google Scholar 

  136. Spizzo F, Sgarbossa P, Sieni E et al (2017) Synthesis of Ferrofluids made of Iron oxide Nanoflowers: interplay between carrier fluid and magnetic properties. Nano 7:373. https://doi.org/10.3390/nano7110373

    Article  CAS  Google Scholar 

  137. Jadhav NV, Prasad AI, Kumar A et al (2013) Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surf B Biointerfaces 108:158–168. https://doi.org/10.1016/j.colsurfb.2013.02.035

    Article  CAS  Google Scholar 

  138. Hemery G, Genevois C, Couillaud F et al (2017) Monocore vs. multicore magnetic iron oxide nanoparticles: uptake by glioblastoma cells and efficiency for magnetic hyperthermia. Mol Syst Des Eng 2:629–639. https://doi.org/10.1039/C7ME00061H

    Article  CAS  Google Scholar 

  139. Zhang J, Dewilde AH, Chinn P et al (2011) Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Int J Hyperth 27:682–697. https://doi.org/10.3109/02656736.2011.609863

    Article  CAS  Google Scholar 

  140. Majeed J, Pradhan L, Ningthoujam RS et al (2014) Enhanced specific absorption rate in silanol functionalized Fe3O4 core-shell nanoparticles: study of Fe leaching in Fe3O4 and hyperthermia in L929 and HeLa cells. Colloids Surf B Biointerfaces 122:396–403. https://doi.org/10.1016/j.colsurfb.2014.07.019

    Article  CAS  Google Scholar 

  141. Aljarrah K, Mhaidat NM, Al-Akhras M-AH et al (2012) Magnetic nanoparticles sensitize MCF-7 breast cancer cells to doxorubicin-induced apoptosis. World J Surg Oncol 10:62

    Article  Google Scholar 

  142. Gilchrist RK, Medal R, Shorey WD et al (1957) Selective inductive heating of lymph nodes. Ann Surg 146:596–606. https://doi.org/10.1097/00000658-195710000-00007

    Article  CAS  Google Scholar 

  143. Zhao Q, Wang L, Cheng R et al (2012) Magnetic nanoparticle-based hyperthermia for head & neck cancer in mouse models. Theranostics 2:113–121. https://doi.org/10.7150/thno.3854

    Article  CAS  Google Scholar 

  144. Yi GQ, Gu B, Chen LK (2014) The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma. Tumor Biol 35:2445–2449. https://doi.org/10.1007/s13277-013-1324-8

    Article  CAS  Google Scholar 

  145. Araya T, Kasahara N et al (2013) Antitumor effects of inductive hyperthermia using magnetic ferucarbotran nanoparticles on human lung cancer xenografts in nude mice. Onco Targets Ther 6:237. https://doi.org/10.2147/OTT.S42815

    Article  Google Scholar 

  146. Spirou S, Costa Lima S, Bouziotis P et al (2018) Recommendations for in vitro and in vivo testing of magnetic nanoparticle hyperthermia combined with radiation therapy

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak Maity .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maity, D., Kandasamy, G. (2019). Superparamagnetic Nanoparticles for Cancer Hyperthermia Treatment. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59596-1_7

Download citation

Publish with us

Policies and ethics