Skip to main content

Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems

  • Chapter
  • First Online:
Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy

Abstract

This chapter outlines the main stem cell lines and nanomaterials utilized in tissue engineering for regenerative medicine, with a distinct focus on the cardiovascular system, which is our research area of interest.

Funding/Disclosures: Partial funding was provided by NSF-CBET-1659244, and George M. and Boyce W. Billingsley Endowment Fund for Dr. Rao, as well as NSF-CMMI-1235100, NSF-OIA-1457888, and Arkansas Biosciences Institute for Dr. Kim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AFPC:

Amniotic fluid progenitor cells

AgNP:

Silver nanoparticle

AuNP:

Gold particle

bFGF:

Basic fibroblast growth factor

BM-MSC:

Bone marrow-derived mesenchymal stem cells

CAD:

Computer-aided software

CAFC:

Cobblestone area formation assay

CFU:

Colony formation unit assay

CM:

Cardiomyocyte

CNC:

Cellulose nanocrystals

CNT:

Carbon nanotube

CRU:

Competitive repopulating unit assay

CVD:

Chemical vapor deposition

DNA:

Deoxyribonucleic acid

EB:

Embryoid body

EC:

Endothelial cell

ECM:

Extracellular matrix

ESC:

Embryonic stem cells

FACS:

Fluorescence-activated cell sorting

FDM:

Fused deposition modeling

FGF:

Fibroblast growth factor

GelMA:

Carbon nanotube-gelatin methacrylate

GM:

Gelatin microspheres

GO:

Graphene oxide

HA:

Hyaluronic acid

HAp/CS-Gel:

Hydroxyapatite/chitosan–gelatin

hASCs:

Human adipose mesenchymal stem cells

hESC:

Human embryonic stem cells

HIPE:

High internal phase emulsion

hNSCs:

Human neural stem cells

HSCs:

Hematopoietic stem cells

IGF:

Insulin growth factor

iPSC:

Induced pluripotent stem cells

KOSR:

Knockout serum replacement

LIF:

Leukemia inhibitory factor

LSPR:

Localized surface plasma resonance

LT-IC:

Long-term culture initiation assay

MI:

Myocardial infarction

miRNA:

Micro-RNA

MRI:

Magnetic resonance imaging

MSC:

Mesenchymal stromal cells

MWNT:

Multi-walled carbon nanotube

NFC-X:

Nanofibrillated cellulose

NF-kB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NPs:

Nanoparticles

PBAE:

Biodegradable poly (β-amino-ester)

PCL:

Polycaprolactone

PEG-DA:

Polyethylene (glycol) diacrylate

PEI:

Polyethyleneimine

PGLA:

Polylactic-co-glycolic acid

PLA:

Polylactic acid

PS:

Protamine sulfate

QD:

Quantum dot

RBMSCs:

Rat bone marrow stromal cells

RGO:

Reduced graphene oxide

RNA:

Ribonucleic acid

SCNT:

Somatic cell nuclear transfer

SG:

Single-layer graphene

SL:

Stereolithography

SPIO:

Superparamagnetic iron oxide nanoparticle

SWNT:

Single-walled carbon nanotube

TCP:

Tricalcium phosphate

TGF:

Transforming growth factor

TiO2NP:

Titanium dioxide-based nanoparticle

UDSCs:

Urine-derived stem cells

VEGF:

Vascular endothelial growth factor

ZnONP:

Zinc-oxide-based nanoparticle

References

  1. Vernekar VN, James R, Smith KJ, Laurencin CT (2016) Nanotechnology applications in stem cell science for regenerative engineering. J Nanosci Nanotechnol 16(9):8953–8965

    Article  CAS  Google Scholar 

  2. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  3. Wang W, Zhao Q, Liao S, Zhu Y (2016) Application of stem cells and nanomaterials in prosthodontics. J Nanosci Nanotechnol 16(9):8935–8947

    Article  CAS  Google Scholar 

  4. Padovani GC, Feitosa VP, Sauro S, Tay FR, Duran G, Paula AJ, Duran N (2015) Advances in dental materials through nanotechnology: facts, perspectives and toxicological aspects. Trends Biotechnol 33(11):621–636

    Article  CAS  Google Scholar 

  5. Sciancalepore GA, Maria M, Simonetta C, Luigi R, Netti GS, Clelia P, Dario P (2016) Bioactive nanofiber matrices functionalized with fibronectin-mimetic peptides driving the alignment and tubular commitment of adult renal stem cells. Macromol Chem Phys 217(2):199–212

    Article  CAS  Google Scholar 

  6. MacGregor-Ramiasa M, Hopp I, Bachhuka A, Murray P, Vasilev K (2017) Surface nanotopography guides kidney-derived stem cell differentiation into podocytes. Acta Biomater 56:171–180

    Article  CAS  Google Scholar 

  7. Fabbro A, Prato M, Ballerini L (2013) Carbon nanotubes in neuroregeneration and repair. Adv Drug Deliv Rev 65(15):2034–2044

    Article  CAS  Google Scholar 

  8. Akhavan O (2016) Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system. J Mater Chem B 4(19):3169–3190

    Article  CAS  Google Scholar 

  9. Holzapfel BM, Wagner F, Martine LC, Hutmacher DW, Holzapfel BM, Reppenhagen S, Rudert M, Wagner F, Wagner F, Schuetz M, Denham J, Schantz J-T, Schantz J-T, Hutmacher DW, Hutmacher DW (2016) Tissue engineering and regenerative medicine in musculoskeletal oncology. Cancer Metastasis Rev 35(3):475–487

    Article  CAS  Google Scholar 

  10. Biazar E (2017) Application of polymeric nanofibers in medical designs, part III: musculoskeletal and urological tissues. Int J Polym Mater Polym Biomater 66(1):28–37

    Article  CAS  Google Scholar 

  11. Pan S, Yu H, Yang X, Yang X, Wang Y, Liu Q, Jin L, Yang Y (2017) Application of nanomaterials in stem cell regenerative medicine of orthopedic surgery. J Nanomater 2017:12

    Article  CAS  Google Scholar 

  12. Ngiam M, Nguyen LTH, Liao S, Chan CK, Ramakrishna S (2011) Biomimetic nanostructured materials: potential regulators for osteogenesis? Ann Acad Med Singap 40(5):213–222

    Google Scholar 

  13. Mi S, Khutoryanskiy VV, Jones RR, Zhu X, Hamley IW, Connon CJ (2011) Photochemical cross-linking of plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. J Biomed Mater Res A 99(1):1–8

    Article  CAS  Google Scholar 

  14. Lakshmanan R, Maulik N (2018) Development of next generation cardiovascular therapeutics through bio-assisted nanotechnology. J Biomed Mater Res Part B Appl Biomater 106:2072–2083

    Article  CAS  Google Scholar 

  15. Kharaziha M, Memic A, Akbari M, Brafman DA, Nikkhah M (2016) Nano-enabled approaches for stem cell-based cardiac tissue engineering. Adv Healthc Mater 5(13):1533–1553

    Article  CAS  Google Scholar 

  16. Dayem AA, Choi HY, Yang G-M, Kim K, Saha SK, Kim J-H, Cho S-G (2016) The potential of nanoparticles in stem cell differentiation and further therapeutic applications. Biotechnol J 11(12):1550–1560

    Article  CAS  Google Scholar 

  17. Chen C, Dubin R, Kim MC (2014) Emerging trends and new developments in regenerative medicine: a scientometric update (2000–2014). Expert Opin Biol Ther 14(9):1295–1317

    Article  Google Scholar 

  18. Borghi FF, Rider AE, Kumar S, Han ZJ, Haylock D, Ostrikov K (2013) Emerging stem cell controls: nanomaterials and plasma effects. J Nanomater 329139:16 pp

    Google Scholar 

  19. Teoh GZ, Klanrit P, Kasimatis M, Seifalian AM (2015) Role of nanotechnology in development of artificial organs. Minerva Med 106(1):17–33

    CAS  Google Scholar 

  20. Mooney E, Mackle JN, Blond DJP, O’Cearbhaill E, Shaw G, Blau WJ, Barry FP, Barron V, Murphy JM (2012) The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials 33(26):6132–6139

    Article  CAS  Google Scholar 

  21. Kai D, Prabhakaran MP, Liao S, Ramakrishna S (2010) Stem cells for myocardial tissue engineering. Nano Biomed 2(1):1–22

    Google Scholar 

  22. Jiang T, Carbone EJ, Lo KW-H, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46:1–24

    Article  CAS  Google Scholar 

  23. Nair LS, Bhattacharyya S, Laurencin CT (2004) Development of novel tissue engineering scaffolds via electrospinning. Expert Opin Biol Ther 4(5):659–668

    Article  CAS  Google Scholar 

  24. Ramesh Kumar P, Khan N, Vivekanandhan S, Satyanarayana N, Mohanty A, Misra M (2012) Nanofibers: effective generation by electrospinning and their applications. J Nanosci Nanotechnol 12(1):1–25

    Article  CAS  Google Scholar 

  25. Deitzel JM, Kleinmeyer J, Harris D, Tan NB (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272

    Article  CAS  Google Scholar 

  26. Jaworek A, Sobczyk A (2008) Electrospraying route to nanotechnology: an overview. J Electrost 66(3–4):197–219

    Article  CAS  Google Scholar 

  27. Jin JY, Jeong SI, Shin YM, Lim KS, Shin HS, Lee YM, Koh HC, Kim KS (2009) Transplantation of mesenchymal stem cells within a poly(lactide-co-epsilon-caprolactone) scaffold improves cardiac function in a rat myocardial infarction model. Eur J Heart Fail 11(2):147–153

    Article  CAS  Google Scholar 

  28. Rane AA, Christman KL (2011) Biomaterials for the treatment of myocardial infarction. J Am Coll Cardiol 58(25):2615–2629

    Article  CAS  Google Scholar 

  29. Karam JP, Muscari C, Montero-Menei CN (2012) Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials 33(23):5683–5695

    Article  CAS  Google Scholar 

  30. Ruvinov E, Harel-Adar T, Cohen S (2011) Bioengineering the infarcted heart by applying bio-inspired materials. J Cardiovasc Transl Res 4(5):559–574

    Article  Google Scholar 

  31. Bright FV (1988) Bioanalytical applications of fluorescence spectroscopy. Anal Chem 60(18):1031A–1039A

    Article  CAS  Google Scholar 

  32. Quinn KP, Sridharan GV, Hayden RS, Kaplan DL, Lee K, Georgakoudi I (2013) Quantitative metabolic imaging using endogenous fluorescence to detect stem cell differentiation. Sci Rep 3(3432):1–10

    Google Scholar 

  33. Sapoznik E, Niu G, Zhou Y, Murphy SV, Soker S (2016) Fluorescent cell imaging in regenerative medicine supplementary issue: image and video acquisition and processing for clinical applications. Biomed Eng Comput Biol 77(S1S1):29–33

    Google Scholar 

  34. Yukawa H, Baba Y (2017) In vivo fluorescence imaging and the diagnosis of stem cells using quantum dots for regenerative medicine. Anal Chem 89(5):2671–2681

    Article  CAS  Google Scholar 

  35. Tu CY, Das S, Baker AB, Zoldan J, Suggs LJ (2015) Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano 9(4):3436–3452

    Article  CAS  Google Scholar 

  36. Yang F, Cho SW, Son SM, Bogatyrev SR, Singh D, Green JJ, Mei Y, Park S, Bhang SH, Kim BS, Langer R, Anderson DG (2010) Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc Natl Acad Sci U S A 107(8):3317–3322

    Article  CAS  Google Scholar 

  37. Lee J, Jun I, Park HJ, Kang TJ, Shin H, Cho SW (2014) Genetically engineered myoblast sheet for therapeutic angiogenesis. Biomacromolecules 15(1):361–372

    Article  CAS  Google Scholar 

  38. Gomes RSM, das Neves RP, Cochlin L, Lima A, Carvalho R, Korpisalo P, Dragneva G, Turunen M, Liimatainen T, Clarke K, Yla-Herttuala S, Carr C, Ferreira L (2013) Efficient pro-survival/angiogenic miRNA delivery by an MRI-detectable nanomaterial. ACS Nano 7(4):3362–3372

    Article  CAS  Google Scholar 

  39. Mann I, Rodrigo SF, van Ramshorst J, Beeres SL, Dibbets-Schneider P, de Roos A, Wolterbeek R, Zwaginga JJ, Fibbe WE, Bax JJ, Schalij MJ, Atsma DE (2015) Repeated intramyocardial bone marrow cell injection in previously responding patients with refractory angina again improves myocardial perfusion, anginal complaints, and quality of life. Circ Cardiovasc Interv 8(8)

    Google Scholar 

  40. Accomasso L, Gallina C, Turinetto V, Giachino C (2016) Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int 2016:7920358

    Article  CAS  Google Scholar 

  41. Bull E, Madani SY, Sheth R, Seifalian A, Green M, Seifalian AM (2014) Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine 9:1641–1653

    CAS  Google Scholar 

  42. Zhang L, Dong W-F, Sun H-B (2013) Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. Nanoscale 5(17):7664–7664

    Article  CAS  Google Scholar 

  43. Frangioni JV (2003) In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol 7(5):626–634

    Article  CAS  Google Scholar 

  44. Guo B, Wang Y, Peng C, Zhang H, Luo G, Le H, Gmachl C, Sivco D, Peabody M, Cho A (2004) Laser-based mid-infrared reflectance imaging of biological tissues. Opt Express 12(1):208–219

    Article  Google Scholar 

  45. Hilderbrand SA, Weissleder R (2010) Near-infrared fluorescence: application to in vivo molecular imaging. Curr Opin Chem Biol 14(1):71–79

    Article  CAS  Google Scholar 

  46. Smith AM, Mancini MC, Nie S (2009) Second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  47. Kim J-W, Galanzha EI, Shashkov EV, Moon H-M, Zharov VP (2009) Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 4(10):688–694

    Article  CAS  Google Scholar 

  48. Wang LV, Yao J (2016) A practical guide to photoacoustic tomography in the life sciences. Nat Methods 13(8):627–638

    Article  CAS  Google Scholar 

  49. de la Zerda A, Kim J-W, Galanzha EI, Gambhir SS, Zharov VP (2011) Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics. Contrast Media Mol Imaging 6(5):346–369

    Article  CAS  Google Scholar 

  50. Baron, R.; Willner, B.; Willner, I., Biomolecule-nanoparticle hybrids as functional units for nanobiotechnology. Chem Commun 2007, 0 (4), 323–332

    Google Scholar 

  51. Divya KP, Miroshnikov M, Dutta D, Vemula PK, Ajayan PM, John G (2016) In situ synthesis of metal nanoparticle embedded hybrid soft nanomaterials. Acc Chem Res 49(9):1671–1680

    Article  CAS  Google Scholar 

  52. Portney NG, Singh K, Chaudhary S, Destito G, Schneemann A, Manchester M, Ozkan M (2005) Organic and inorganic nanoparticle hybrids. Langmuir 21(6):2098–2103

    Article  CAS  Google Scholar 

  53. Brauchle E, Schenke-Layland K (2013) Raman spectroscopy in biomedicine – non-invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J 8(3):288–297

    Article  CAS  Google Scholar 

  54. Ghita A, Pascut FC, Sottile V, Denning C, Notingher I (2015) Applications of Raman micro-spectroscopy to stem cell technology: label-free molecular discrimination and monitoring cell differentiation. EPJ Tech Instrum 2(1):6–6

    Article  Google Scholar 

  55. Kudelski A (2008) Analytical applications of Raman spectroscopy. Talanta 76(1):1–8

    Article  CAS  Google Scholar 

  56. Batista CA, Larson RG, Kotov NA (2015) Nonadditivity of nanoparticle interactions. Science 350(6257):1242477

    Article  CAS  Google Scholar 

  57. Anu Mary E, Saravanakumar MP (2017) A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf Ser Mate Sci Eng 263(3):032019

    Article  Google Scholar 

  58. Daniel MCM, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size related properties and applications toward biology, catalysis and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  59. Rana D, Ramasamy K, Leena M, Jiménez C, Campos J, Ibarra P, Haidar ZS, Ramalingam M (2016) Surface functionalization of nanobiomaterials for application in stem cell culture, tissue engineering, and regenerative medicine. Biotechnol Prog 32(3):554–567

    Article  CAS  Google Scholar 

  60. Sperling RA, Parak WJ (1915) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 2010(368):1333–1383

    Google Scholar 

  61. Sears NA, Seshadri DR, Dhavalikar PS, Cosgriff-Hernandez E (2016) A review of three-dimensional printing in tissue engineering. Tissue Eng Part B Rev 22(4):298–310

    Article  CAS  Google Scholar 

  62. Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4(12):1742–1762

    Article  CAS  Google Scholar 

  63. Layani M, Wang X, Magdassi S (2018) Novel materials for 3D printing by photopolymerization. Adv Mater 30:e1706344

    Article  CAS  Google Scholar 

  64. Hotta A, Yamanaka S (2015) Induced pluripotent stem cells. Cambridge University Press, Cambridge, pp 19–33

    Google Scholar 

  65. Hovatta O, Rodin S, Antonsson L, Tryggvason K (2014) Concise review: animal substance-free human embryonic stem cells aiming at clinical applications. Stem Cells Transl Med 3(11):1269–1274

    Article  CAS  Google Scholar 

  66. Slawny N, Smith GD (2015) Embryonic stem cells. Cambridge University Press, Cambridge, pp 3–18

    Google Scholar 

  67. Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Scholer H, Smith A (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct 4. Cell 95(3):379–391

    Article  CAS  Google Scholar 

  68. Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell-Badge R (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17(1):126–140

    Article  CAS  Google Scholar 

  69. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642

    Article  CAS  Google Scholar 

  70. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113(5):643–655

    Article  CAS  Google Scholar 

  71. Harper JC, SenGupta SB (2012) Preimplantation genetic diagnosis: state of the art 2011. Obstet Gynecol Surv 67(6):347–348

    Article  Google Scholar 

  72. Kuliev A, Rechitsky S (2011) Polar body-based preimplantation genetic diagnosis for Mendelian disorders. Mol Hum Reprod 17(5):275–285

    Article  CAS  Google Scholar 

  73. Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun BW, Lopes S, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA, Vallier L (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448(7150):191–1U7

    Article  CAS  Google Scholar 

  74. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RDG (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448(7150):196–U10

    Article  CAS  Google Scholar 

  75. Ahrlund-Richter L, De Luca M, Marshak DR, Munsie M, Veiga A, Rao M (2009) Isolation and production of cells suitable for human therapy: challenges ahead. Cell Stem Cell 4(1):20–26

    Article  CAS  Google Scholar 

  76. Unger C, Skottman H, Blomberg P, Dilber MS, Hovatta O (2008) Good manufacturing practice and clinical-grade human embryonic stem cell lines. Hum Mol Genet 17:R48–R53

    Article  CAS  Google Scholar 

  77. Rajala K, Lindroos B, Hussein SM, Lappalainen RS, Pekkanen-Mattila M, Inzunza J, Rozell B, Miettinen S, Narkilahti S, Kerkela E, Aalto-Setala K, Otonkoski T, Suuronen R, Hovatta O, Skottman H (2010) A defined and xeno-free culture method enabling the establishment of clinical-grade human embryonic, induced pluripotent and adipose stem cells. PLoS One 5(4)

    Article  CAS  Google Scholar 

  78. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7

    Google Scholar 

  79. Mitalipova MM, Rao RR, Hoyer DM, Johnson JA, Meisner LF, Jones KL, Dalton S, Stice SL (2005) Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol 23(1):19–20

    Article  CAS  Google Scholar 

  80. Hasegawa K, Pomeroy JE, Pera MF (2010) Current technology for the derivation of pluripotent stem cell lines from human embryos. Cell Stem Cell 6(6):521–531

    Article  CAS  Google Scholar 

  81. Englund MCO, Caisander G, Noaksson K, Emanuelsson K, Lundin K, Bergh C, Hansson C, Semb H, Strehl R, Hyllner J (2010) The establishment of 20 different human embryonic stem cell lines and subclones; a report on derivation, culture, characterisation and banking. In Vitro Cell Dev Biol Anim 46(3–4):217–230

    Article  Google Scholar 

  82. Amit M, Margulets V, Segev H, Shariki K, Laevsky I, Coleman R, Itskovitz-Eldor J (2003) Human feeder layers for human embryonic stem cells. Biol Reprod 68(6):2150–2156

    Article  CAS  Google Scholar 

  83. Hovatta O, Mikkola M, Gertow K, Stromberg AM, Inzunza J, Hreinsson J, Rozell B, Blennow E, Andang M, Ahrlund-Richter L (2003) A culture system using human foreskin fibroblasts as feeder cells allows production of human embryonic stem cells. Hum Reprod 18(7):1404–1409

    Article  Google Scholar 

  84. Kehat I, Gepstein L (2003) Human embryonic stem cells for myocardial regeneration. Heart Fail Rev 8(3):229–236

    Article  Google Scholar 

  85. Fu X, Xu Y (2011) Self-renewal and scalability of human embryonic stem cells for human therapy. Regen Med 6(3):327–334

    Article  Google Scholar 

  86. Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, Hubschman J-P, Davis JL, Heilwell G, Spirn M, Maguire J, Gay R, Bateman J, Ostrick RM, Morris D, Vincent M, Anglade E, Del Priore LV, Lanza R (2015) Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385(9967):509–516

    Article  Google Scholar 

  87. Yamanaka S, Blau HM (2010) Nuclear reprogramming to a pluripotent state by three approaches. Nature 465(7299):704–712

    Article  CAS  Google Scholar 

  88. Kim J, Efe JA, Zhu SY, Talantova M, Yuan X, Wang SF, Lipton SA, Zhang K, Ding S (2011) Direct reprogramming of mouse fibroblasts to neural progenitors. Proc Natl Acad Sci U S A 108(19):7838–7843

    Article  CAS  Google Scholar 

  89. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC, Wernig M (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1U50

    Article  CAS  Google Scholar 

  90. Caiazzo M, Dell’Anno MT, Dvoretskova E, Lazarevic D, Taverna S, Leo D, Sotnikova TD, Menegon A, Roncaglia P, Colciago G, Russo G, Carninci P, Pezzoli G, Gainetdinov RR, Gustincich S, Dityatev A, Broccoli V (2011) Direct generation of functional dopaminergic neurons from mouse and human fibroblasts. Nature 476(7359):224–U151

    Article  CAS  Google Scholar 

  91. Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A, Bjorklund A, Lindvall O, Jakobsson J, Parmar M (2011) Direct conversion of human fibroblasts to dopaminergic neurons. Proc Natl Acad Sci U S A 108(25):10343–10348

    Article  CAS  Google Scholar 

  92. Hiramatsu K, Sasagawa S, Outani H, Nakagawa K, Yoshikawa H, Tsumaki N (2011) Generation of hyaline cartilaginous tissue from mouse adult dermal fibroblast culture by defined factors. J Clin Investig 121(2):640–657

    Article  CAS  Google Scholar 

  93. Szabo E, Rampalli S, Risueno RM, Schnerch A, Mitchell R, Fiebig-Comyn A, Levadoux-Martin M, Bhatia M (2010) Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468(7323):521–U191

    Article  CAS  Google Scholar 

  94. Huang PY, He ZY, Ji SY, Sun HW, Xiang D, Liu CC, Hu YP, Wang X, Hui LJ (2011) Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475(7356):386–U142

    Article  CAS  Google Scholar 

  95. Sekiya S, Suzuki A (2011) Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475(7356):390-U148

    Article  CAS  Google Scholar 

  96. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  Google Scholar 

  97. Das AK, Pal R (2010) Induced pluripotent stem cells (iPSCs): the emergence of a new champion in stem cell technology-driven biomedical applications. J Tissue Eng Regen Med 4(6):413–421

    CAS  Google Scholar 

  98. Zhang JH, Wilson GF, Soerens AG, Koonce CH, Yu JY, Palecek SP, Thomson JA, Kamp TJ (2009) Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 104(4):E30–E41

    Article  CAS  Google Scholar 

  99. Hayashi R, Ishikawa Y, Sasamoto Y, Katori R, Nomura N, Ichikawa T, Araki S, Soma T, Kawasaki S, Sekiguchi K, Quantock AJ, Tsujikawa M, Nishida K (2016) Co-ordinated ocular development from human iPS cells and recovery of corneal function. Nature 531(7594):376–380

    Article  CAS  Google Scholar 

  100. Zhao TB, Zhang ZN, Rong ZL, Xu Y (2011) Immunogenicity of induced pluripotent stem cells. Nature 474(7350):212–U251

    Article  CAS  Google Scholar 

  101. Hu QR, Friedrich AM, Johnson LV, Clegg DO (2010) Memory in induced pluripotent stem cells: reprogrammed human retinal-pigmented epithelial cells show tendency for spontaneous redifferentiation. Stem Cells 28(11):1981–1991

    Article  CAS  Google Scholar 

  102. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LIR, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467(7313):285–U60

    Article  CAS  Google Scholar 

  103. Yusa K, Rad R, Takeda J, Bradley A (2009) Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6(5):363–U69

    Article  CAS  Google Scholar 

  104. Jia FJ, Wilson KD, Sun N, Gupta DM, Huang M, Li ZJ, Panetta NJ, Chen ZY, Robbins RC, Kay MA, Longaker MT, Wu JC (2010) A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7(3):197–U46

    Article  CAS  Google Scholar 

  105. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, Kim KS (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4(6):472–476

    Article  CAS  Google Scholar 

  106. Cahan P, Daley GQ (2013) Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 14(6):357–368

    Article  CAS  Google Scholar 

  107. Puri MC, Nagy A (2012) Concise review: embryonic stem cells versus induced pluripotent stem cells: the game is on. Stem Cells 30(1):10–14

    Article  CAS  Google Scholar 

  108. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  Google Scholar 

  109. Robey PG (2015) Connective tissue stem and progenitor cells. Cambridge University Press, Cambridge, pp 34–43

    Google Scholar 

  110. Abdulrazzak H, Moschidou D, Jones G, Guillot PV (2010) Biological characteristics of stem cells from foetal, cord blood and extraembryonic tissues. J R Soc Interface 7:S689–S706

    Article  Google Scholar 

  111. Mack D, Skardal A, Soker S, Atala A (2015) Using biomaterials for fetal stem cell isolation, expansion and directed-differentiation. Cambridge University Press, Cambridge, pp 64–79

    Google Scholar 

  112. Marcus AJ, Woodbury D (2008) Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 12(3):730–742

    Article  CAS  Google Scholar 

  113. Hoehn H, Bryant EM, Fantel AG, Martin GM (1975) Cultivated cells from diagnostic amniocentesis in 2nd trimester pregnancies. 3. Fetal urine as a potential source of clonable cells. Humangenetik 29(4):285–290

    Article  CAS  Google Scholar 

  114. Atala A (2012) Basic principles of amniotic fluid and placenta stem cells. Elsevier, Cambridge, pp 64–76

    Chapter  Google Scholar 

  115. Kaviani A, Perry TE, Dzakovic A, Jennings RW, Ziegler MM, Fauza DO (2001) The amniotic fluid as a source of cells for fetal tissue engineering. J Pediatr Surg 36(11):1662–1665

    Article  CAS  Google Scholar 

  116. Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19(6):1450–1456

    Article  Google Scholar 

  117. Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo RE (2007) Renal differentiation of amniotic fluid stem cells. Cell Prolif 40(6):936–948

    Article  CAS  Google Scholar 

  118. Perin L, Sedrakyan S, Giuliani S, Da Sacco S, Carraro G, Shiri L, Lemley KV, Rosol M, Wu S, Atala A, Warburton D, De Filippo RE (2010) Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5(2)

    Article  CAS  Google Scholar 

  119. Ji XL, Wang M, Chen F, Zhou JM (2017) Urine-derived stem cells: the present and the future. Stem Cells Int. https://doi.org/10.1155/2017/4378947

    Google Scholar 

  120. Zhang YY, McNeill E, Tian H, Soker S, Andersson KE, Yoo JJ, Atala A (2008) Urine derived cells are a potential source for urological tissue reconstruction. J Urol 180(5):2226–2233

    Article  CAS  Google Scholar 

  121. Bharadwaj S, Liu GH, Shi YG, Wu RP, Yang B, He TC, Fan YX, Lu XY, Zhou XB, Liu H, Atala A, Rohozinski J, Zhang YY (2013) Multipotential differentiation of human urine-derived stem cells: potential for therapeutic applications in urology. Stem Cells 31(9):1840–1856

    Article  CAS  Google Scholar 

  122. Ramsay S, Ringuette-Goulet C, Langlois A, Bolduc S (2016) Clinical challenges in tissue-engineered urethral reconstruction. Transl Androl Urol 5(2):267–270

    Article  Google Scholar 

  123. Liu Y, Ma WJ, Liu B, Wang YC, Chu JQ, Xiong G, Shen LJ, Long CL, Lin T, He DW, Butnaru D, Alexey L, Zhang YY, Zhang DY, Wei GH (2017) Urethral reconstruction with autologous urine-derived stem cells seeded in three-dimensional porous small intestinal submucosa in a rabbit model. Stem Cell Res Ther 8

    Google Scholar 

  124. Versteegden LRM, de Jonge P, IntHout J, van Kuppevelt TH, Oosterwijk E, Feitz WFJ, de Vries RBM, Daamen WF (2017) Tissue engineering of the urethra: a systematic review and meta-analysis of preclinical and clinical studies. Eur Urol 72(4):594–606

    Article  Google Scholar 

  125. Chan YY, Sandlin SK, Kurzrock EA, Osborn SL (2017) The current use of stem cells in bladder tissue regeneration and bioengineering. Biomedicine 5(1):4

    Article  Google Scholar 

  126. Bodin A, Bharadwaj S, Wu SF, Gatenholm P, Atala A, Zhang YY (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):8889–8901

    Article  CAS  Google Scholar 

  127. Tong ZC, Cao C, Rao MH, Lu J, Tan JM (2015) Potential cell source for cell-based therapy and tissue engineering applications: urine-derived stem cells. J Biomater Tissue Eng 5(2):150–156

    Article  Google Scholar 

  128. Mehta G, Shiozawa Y, Taichman R (2015) Hematopoietic stem cells and their niches. Cambridge University Press, Cambridge, pp 44–63

    Google Scholar 

  129. Fliedner TM, Graessle D, Paulsen C, Reimers K (2002) Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure. Cancer Biother Radiopharm 17(4):405–426

    Article  CAS  Google Scholar 

  130. Rookmaaker MB, Verhaar MC, Loomans CJM, Verloop R, Peters E, Westerweel PE, Murohara T, Staal FJT, van Zonneveld AJ, Koolwijk P, Rabelink TJ, van Hinsbergh VWM (2005) CD34(+) cells home, proliferate, and participate in capillary formation, and in combination with CD34(−) cells enhance tube formation in a 3-dimensional matrix. Arterioscler Thromb Vasc Biol 25(9):1843–1850

    Article  CAS  Google Scholar 

  131. Braccini A, Wendt D, Jaquiery C, Jakob M, Heberer M, Kenins L, Wodnar-Filipowicz A, Quarto R, Martin I (2005) Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23(8):1066–1072

    Article  Google Scholar 

  132. Kim HS, Lim JB, Min YH, Lee ST, Lyu CJ, Kim ES, Kim HO (2003) Ex vivo expansion of human umbilical cord blood CD34(+) cells in a collagen bead-containing 3-dimensional culture system. Int J Hematol 78(2):126–132

    Article  Google Scholar 

  133. Li Y, Ma T, Kniss DA, Yang ST, Lasky LC (2001) Human cord cell hematopoiesis in three-dimensional nonwoven fibrous matrices: in vitro simulation of the marrow microenvironment. J Hematother Stem Cell Res 10(3):355–368

    Article  CAS  Google Scholar 

  134. Banu N, Rosenzweig M, Kim H, Bagley J, Pykett M (2001) Cytokine-augmented culture of haematopoietic progenitor cells in a novel three-dimensional cell growth matrix. Cytokine 13(6):349–358

    Article  CAS  Google Scholar 

  135. Bagley J, Rosenzweig M, Marks DF, Pykett MJ (1999) Extended culture of multipotent hematopoietic progenitors without cytokine augmentation in a novel three-dimensional device. Exp Hematol 27(3):496–504

    Article  CAS  Google Scholar 

  136. de Barros A, Takiya CM, Garzoni LR, Leal-Ferreira ML, Dutra HS, Chiarini LB, Meirelles MN, Borojevic R, Rossi MID (2010) Osteoblasts and bone marrow mesenchymal stromal cells control hematopoietic stem cell migration and proliferation in 3D in vitro model. PLoS One 5(2)

    Google Scholar 

  137. Rossi MID, Barros A, Baptista LS, Garzoni LR, Meirelles MN, Takiya CM, Pascarelli BMO, Dutra HS, Borojevic R (2005) Multicellular spheroids of bone marrow stromal cells: a three-dimensional in vitro culture system for the study of hematopoietic cell migration. Braz J Med Biol Res 38(10):1455–1462

    Article  CAS  Google Scholar 

  138. Seita J, Weissman IL (2010) Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2(6):640–653

    Article  CAS  Google Scholar 

  139. Notta F, Doulatov S, Laurenti E, Poeppl A, Jurisica I, Dick JE (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333(6039):218–221

    Article  CAS  Google Scholar 

  140. Majeti R, Park CY, Weissman IL (2007) Identification of a hierarchy of multipotent hematopoietic progenitors in human cord blood. Cell Stem Cell 1(6):635–645

    Article  CAS  Google Scholar 

  141. Craig W, Kay R, Cutler RL, Lansdorp PM (1993) Expression of Thy-1 on human hematopoietic progenitor cells. J Exp Med 177(5):1331–1342

    Article  CAS  Google Scholar 

  142. Mayani H, Dragowska W, Lansdorp PM (1993) Characterization of functionally distinct subpopulations of CD34+ cord-blood cells in serum-free long-term cultures supplemented with hematopoietic cytokines. Blood 82(9):2664–2672

    Article  CAS  Google Scholar 

  143. Hao QL, Shah AJ, Thiemann FT, Smogorzewska EM, Crooks GM (1995) A functional comparison of CD34(+)CD38(−) cells in cord-blood and bone-marrow. Blood 86(10):3745–3753

    Article  CAS  Google Scholar 

  144. Martínez E, Lagunas A, Mills CA, Rodríguez-Seguí S, Estévez M, Oberhansl S, Comelles J, Samitier J (2009) Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine 4(1):65–82

    Article  Google Scholar 

  145. Huang NF, Li S (2011) Regulation of the matrix microenvironment for stem cell engineering and regenerative medicine. Ann Biomed Eng 39(4):1201–1214

    Article  Google Scholar 

  146. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39(11):4146–4146

    Article  CAS  Google Scholar 

  147. Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35(4):289–295

    Article  CAS  Google Scholar 

  148. Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed Engl 48(42):7752–7777

    Article  CAS  Google Scholar 

  149. Bhuyan MSA, Uddin MN, Islam MM, Bipasha FA, Hossain SS (2016) Synthesis of graphene. Int Nano Lett 6(2):65–83

    Article  CAS  Google Scholar 

  150. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4(4):217–224

    Article  CAS  Google Scholar 

  151. Papageorgiou DG, Kinloch IA, Young RJ (2017) Mechanical properties of graphene and graphene-based nanocomposites. Prog Mater Sci 90:75–127

    Article  CAS  Google Scholar 

  152. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  153. Cui X, Zhang C, Hao R, Hou Y (2011) Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale 3(5):2118–2118

    Article  CAS  Google Scholar 

  154. Huang Y, Liang J, Chen Y (2012) An overview of the applications of graphene-based materials in supercapacitors. Small 8(12):1805–1834

    Article  CAS  Google Scholar 

  155. Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7098

    Article  CAS  Google Scholar 

  156. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  157. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  158. Georgakilas V, Tiwari JN, Kemp KC, Perman JA, Bourlinos AB, Kim KS, Zboril R (2016) Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem Rev 116(9):5464–5519

    Article  CAS  Google Scholar 

  159. Ryon Shin S, Yi-Chen L, Jang H, Khoshakhlagh P, Akbari M, Nasajpour A, Zhang YS, Tamayol A, Khademhosseini A (2016) Graphene-based materials for tissue engineering. Adv Drug Deliv Rev 105:255–274

    Article  CAS  Google Scholar 

  160. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics 2(3):283–294

    Article  CAS  Google Scholar 

  161. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601

    Article  CAS  Google Scholar 

  162. Reina G, González-Domínguez JM, Criado A, Vázquez E, Bianco A, Prato M (2017) Promises, facts and challenges for graphene in biomedical applications. Chem Soc Rev:4400–4416

    Article  CAS  Google Scholar 

  163. Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5(9):7334–7341

    Article  CAS  Google Scholar 

  164. Park SY, Park J, Sim SH, Sung MG, Kim KS, Hong BH, Hong S (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23(36):263–267

    Article  CAS  Google Scholar 

  165. Shah S, Yin PT, Uehara TM, Chueng STD, Yang L, Lee KB (2014) Guiding stem cell differentiation into oligodendrocytes using graphene-nanofiber hybrid scaffolds. Adv Mater 26(22):3673–3680

    Article  CAS  Google Scholar 

  166. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    Article  CAS  Google Scholar 

  167. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity: miniperspective. J Med Chem 59(18):8149–8167

    Article  CAS  Google Scholar 

  168. Harris PJF (2013) Carbon nanotube science. Int Mater 53:1689–1699

    Google Scholar 

  169. Baughman RH (2002) Carbon nanotubes – the route toward applications. Science 297(787):787–792

    Article  CAS  Google Scholar 

  170. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9):1624–1652

    Article  CAS  Google Scholar 

  171. Awasthi K, Srivastava A, Srivastava ON (2005) Synthesis of carbon nanotubes. J Nanosci Nanotechnol 5(10):1616–1636

    Article  CAS  Google Scholar 

  172. Rakov EG (2000) Methods for preparation of carbon nanotubes. Russ Chem Rev 69(1):35–52

    Article  CAS  Google Scholar 

  173. Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33(7):883–891

    Article  CAS  Google Scholar 

  174. Shah KA, Tali BA (2016) Synthesis of carbon nanotubes by catalytic chemical vapour deposition: a review on carbon sources, catalysts and substrates. Mater Sci Semicond Process 41:67–82

    Article  CAS  Google Scholar 

  175. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28(2):344–353

    Article  CAS  Google Scholar 

  176. Alshehri R, Ilyas AM, Hasan A, Arnaout A, Ahmed F, Memic A (2016) Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J Med Chem 59(18):8149–8167

    Article  CAS  Google Scholar 

  177. Stout DA, Webster TJ (2012) Carbon nanotubes for stem cell control. Mater Today 15(7–8):312–318

    Article  CAS  Google Scholar 

  178. Chen C-S, Soni S, Le C, Biasca M, Farr E, Chen EYT, Chin W-C (2012) Human stem cell neuronal differentiation on silk-carbon nanotube composite. Nanoscale Res Lett 7(1):126–126

    Article  CAS  Google Scholar 

  179. Landers J, Turner JT, Heden G, Carlson AL, Bennett NK, Moghe PV, Neimark AV (2013) Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. J Magn Reson 236(11):47–56

    Google Scholar 

  180. Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon 49(10):3284–3291

    Article  CAS  Google Scholar 

  181. Shin SR, Jung SM, Zalabany M, Kim K, Zorlutuna P, Kim SB, Nikkhah M, Khabiry M, Azize M, Kong J, Wan KT, Palacios T, Dokmeci MR, Bae H, Tang X, Khademhosseini A (2013) Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators. ACS Nano 7(3):2369–2380

    Article  CAS  Google Scholar 

  182. Berciaud S, Cognet L, Poulin P, Weisman RB, Lounis B (2007) Absorption spectroscopy of individual single-walled carbon nanotubes. Nano Lett 7(5):1203–1207

    Article  CAS  Google Scholar 

  183. Connell MJO, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593–596

    Article  Google Scholar 

  184. Shi Kam NW, O’Connell M, Wisdom JA, Dai H (2005) Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc Natl Acad Sci 102(33):11600–11605

    Article  CAS  Google Scholar 

  185. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409(2):47–99

    Article  Google Scholar 

  186. Gao Y, Cui Y, Chan JK, Xu C (2013) Stem cell tracking with optically active nanoparticles. Am J Nucl Med Mol Imaging 3(3):232–246

    CAS  Google Scholar 

  187. Wang C, Ma X, Ye S, Cheng L, Yang K, Guo L, Li C, Li Y, Liu Z (2012) Protamine functionalized single-walled carbon nanotubes for stem cell labeling and in vivo Raman/magnetic resonance/photoacoustic triple-modal imaging. Adv Funct Mater 22(11):2363–2375

    Article  CAS  Google Scholar 

  188. Li X, Liu H, Niu X, Yu B, Fan Y, Feng Q, Cui FZ, Watari F (2012) The use of carbon nanotubes to induce osteogenic differentiation of human adipose-derived MSCs in vitro and ectopic bone formation in vivo. Biomaterials 33(19):4818–4827

    Article  CAS  Google Scholar 

  189. Venkatesan J, Qian ZJ, Ryu B, Ashok Kumar N, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan – natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83(2):569–577

    Article  CAS  Google Scholar 

  190. Kargarzadeh H, Ioelovich M, Ahmad I, Thomas S, Dufresne A (2017) Methods for extraction of nanocellulose from various sources. In: Handbook of nanocellulose and cellulose nanocomposites. Wiley, Weinheim, pp 1–49

    Chapter  Google Scholar 

  191. Trache D, Hussin MH, Haafiz MKM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786

    Article  CAS  Google Scholar 

  192. Sacui IA, Nieuwendaal RC, Burnett DJ, Stranick SJ, Jorfi M, Weder C, Foster EJ, Olsson RT, Gilman JW (2014) Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods. ACS Appl Mater Interfaces 6(9):6127–6138

    Article  CAS  Google Scholar 

  193. Tang J, Sisler J, Grishkewich N, Tam KC (2017) Functionalization of cellulose nanocrystals for advanced applications. J Colloid Interface Sci 494:397–409

    Article  CAS  Google Scholar 

  194. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  195. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    Article  CAS  Google Scholar 

  196. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  Google Scholar 

  197. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3274

    Article  CAS  Google Scholar 

  198. Domingues RMA, Gomes ME, Reis RL (2014) The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules 15(7):2327–2346

    Article  CAS  Google Scholar 

  199. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132(14):1–19

    Article  CAS  Google Scholar 

  200. Sinha A, Martin EM, Lim K-T, Carrier DJ, Han H, Zharov VP, Kim J-W (2015) Cellulose nanocrystals as advanced “green” materials for biological and biomedical engineering. J Biosyst Eng 40(4):373–393

    Article  Google Scholar 

  201. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55

    Article  CAS  Google Scholar 

  202. Mertaniemi H, Escobedo-Lucea C, Sanz-Garcia A, Gandía C, Mäkitie A, Partanen J, Ikkala O, Yliperttula M (2016) Human stem cell decorated nanocellulose threads for biomedical applications. Biomaterials 82:208–220

    Article  CAS  Google Scholar 

  203. De France KJ, Chan KJW, Cranston ED, Hoare T (2016) Enhanced mechanical properties in cellulose nanocrystal-poly(oligoethylene glycol methacrylate) injectable nanocomposite hydrogels through control of physical and chemical cross-linking. Biomacromolecules 17(2):649–660

    Article  CAS  Google Scholar 

  204. Domingues RMA, Silva M, Gershovich P, Betta S, Babo P, Caridade SG, Mano JF, Motta A, Reis RL, Gomes ME (2015) Development of injectable hyaluronic acid/cellulose nanocrystals bionanocomposite hydrogels for tissue engineering applications. Bioconjug Chem 26(8):1571–1581

    Article  CAS  Google Scholar 

  205. Bhattacharya M, Malinen MM, Lauren P, Lou YR, Kuisma SW, Kanninen L, Lille M, Corlu A, Guguen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298

    Article  CAS  Google Scholar 

  206. Li W, Lan Y, Guo R, Zhang Y, Xue W, Zhang Y (2015) In vitro and in vivo evaluation of a novel collagen/cellulose nanocrystals scaffold for achieving the sustained release of basic fibroblast growth factor. J Biomater Appl 29(6):882–893

    Article  CAS  Google Scholar 

  207. Liu S, Jin M, Chen Y, Gao H, Shi X, Cheng W, Ren L, Wang Y (2017) High internal phase emulsions stabilised by supramolecular cellulose nanocrystals and their application as cell-adhesive macroporous hydrogel monoliths. J Mater Chem B 5(14):2671–2678

    Article  CAS  Google Scholar 

  208. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248

    Article  CAS  Google Scholar 

  209. Ghosh SK, Nath S, Kundu S, Esumi K, Pal T (2004) Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids. J Phys Chem B 108(37):13963–13971

    Article  CAS  Google Scholar 

  210. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35(11):1084–1084

    Article  CAS  Google Scholar 

  211. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677

    Article  CAS  Google Scholar 

  212. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. TrAC Trends Anal Chem 58:90–98

    Article  CAS  Google Scholar 

  213. Lin CAJ, Lee CH, Hsieh JT, Wang HH, Li JK, Shen JL, Chan WH, Yeh HI, Chang WH (2009) Synthesis of fluorescent metallic nanoclusters toward biomedical application: recent progress and present challenges. J Med Biol Eng 29(6):276–283

    CAS  Google Scholar 

  214. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28

    Article  Google Scholar 

  215. Cao J, Sun T, Grattan KTV (2014) Gold nanorod-based localized surface plasmon resonance biosensors: a review. Sensors Actuators B Chem 195:332–351

    Article  CAS  Google Scholar 

  216. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257(3–4):638–665

    Article  CAS  Google Scholar 

  217. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595

    Article  CAS  Google Scholar 

  218. Yeh Y-C, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties, and applications in bionanotechnology. Nanoscale 4(6):1871–1880

    Article  CAS  Google Scholar 

  219. Sperling RA, Gil PR, Zhang F, Zanella M, Parak WJ (2008) 2008 Gold: Chemistry, Materials and Catalysis Issue. Please take a look at the full table of contents to access the. Chem Soc Rev 37(9):1909–1930

    Article  CAS  Google Scholar 

  220. Sathuluri RR, Yoshikawa H, Shimizu E, Saito M, Tamiya E (2011) Gold nanoparticle-based surface-enhanced Raman scattering for noninvasive molecular probing of embryonic stem cell differentiation. PLoS One 6(8)

    Article  Google Scholar 

  221. Encabo-Berzosa MDM, Sancho-Albero M, Crespo A, Andreu V, Sebastian V, Irusta S, Arruebo M, Martín-Duque P, Santamaria J (2017) The effect of PEGylated hollow gold nanoparticles on stem cell migration: potential application in tissue regeneration. Nanoscale 9(28):9848–9858

    Article  CAS  Google Scholar 

  222. Ricles LM, Nam SY, Trevino EA, Emelianov SY, Suggs LJ (2005) A dual gold nanoparticle system for mesenchymal stem cell tracking. Biophys Chem 257(5):2432–2437

    Google Scholar 

  223. Kang S, Bhang SH, Hwang S, Yoon JK, Song J, Jang HK, Kim S, Kim BS (2015) Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy. ACS Nano 9(10):9678–9690

    Article  CAS  Google Scholar 

  224. Yi C, Liu D, Fong C-C, Zhang J, Yang M (2010) Gold nanoparticles promote osteogenic. ACS Nano 4(11):6439–6448

    Article  CAS  Google Scholar 

  225. Berman SC, Walczak P, Jeff WMB (2011) Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Syst Biol Med 3:343–355

    Article  CAS  Google Scholar 

  226. Thorek DLJ, Chen AK, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  Google Scholar 

  227. Huber DL (2005) Synthesis, properties, and applications of iron nanoparticles. Small 1(5):482–501

    Article  CAS  Google Scholar 

  228. Wahajuddin, Arora S (2012) Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Int J Nanomedicine 7:3445–3471

    Article  CAS  Google Scholar 

  229. Mohammed L, Gomaa HG, Ragab D, Zhu J (2017) Magnetic nanoparticles for environmental and biomedical applications: a review. Particuology 30:1–14

    Article  CAS  Google Scholar 

  230. Angelakeris M (2017) Magnetic nanoparticles: a multifunctional vehicle for modern theranostics. Biochim Biophys Acta Gen Subj 1861(6):1642–1651

    Article  CAS  Google Scholar 

  231. Adams C, Israel LL, Ostrovsky S, Taylor A, Poptani H, Lellouche JP, Chari D (2016) Development of multifunctional magnetic nanoparticles for genetic engineering and tracking of neural stem cells. Adv Healthc Mater 5(7):841–849

    Article  CAS  Google Scholar 

  232. Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18(4):410–414

    Article  CAS  Google Scholar 

  233. Odabaş S, Sayar F, Güven G, Yanikkaya-Demirel G, Pişkin E (2008) Separation of mesenchymal stem cells with magnetic nanosorbents carrying CD105 and CD73 antibodies in flow-through and batch systems. J Chromatogr B Anal Technol Biomed Life Sci 861(1):74–80

    Article  CAS  Google Scholar 

  234. Yun HM, Ahn SJ, Park KR, Kim MJ, Kim JJ, Jin GZ, Kim HW, Kim EC (2016) Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials 85:88–98

    Article  CAS  Google Scholar 

  235. Shimizu K, Ito A, Yoshida T, Yamada Y, Ueda M, Honda H (2007) Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J Biomed Mater Res B Appl Biomater 83(2):340–344

    Google Scholar 

  236. Drummen GPC (2010) Quantum dots – from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11(1):154–163

    Article  CAS  Google Scholar 

  237. Esteve-Turrillas FA, Abad-Fuentes A (2013) Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosens Bioelectron 41(1):12–29

    Article  CAS  Google Scholar 

  238. Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    Article  CAS  Google Scholar 

  239. Brichkin SB, Razumov VF (2016) Colloidal quantum dots: synthesis, properties and applications. Russ Chem Rev 85(12):1297–1312

    Article  CAS  Google Scholar 

  240. Foubert A, Beloglazova NV, Rajkovic A, Sas B, Madder A, Goryacheva IY, De Saeger S (2016) Bioconjugation of quantum dots: review & impact on future application. TrAC Trends Anal Chem 83:31–48

    Article  CAS  Google Scholar 

  241. Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13(1):40–46

    Article  CAS  Google Scholar 

  242. Michalet X, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(January):538–544

    Article  CAS  Google Scholar 

  243. Zrazhevskiy P, Gao X (2009) Multifunctional quantum dots for personalized medicine. Nano Today 4(5):414–428

    Article  CAS  Google Scholar 

  244. Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7(10):3071–3079

    Article  CAS  Google Scholar 

  245. Rosen AB, Kelly DJ, Schuldt AJT, Lu J, Potapova IA, Doronin SV, Robichaud KJ, Robinson RB, Rosen MR, Brink PR, Gaudette GR, Cohen IS (2007) Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells 25(8):2128–2138

    Article  CAS  Google Scholar 

  246. Ho JH-C, Ma W-H, Tseng T-C, Chen Y-F, Chen M-H, Lee OK-S (2011) Isolation and characterization of multi-potent stem cells from human orbital fat tissues. Tissue Eng A 17(1–2):255–266

    Article  CAS  Google Scholar 

  247. Lei Y, Tang H, Yao L, Yu R, Feng M, Zou B (2008) Applications of mesenchymal stem cells labeled with tat peptide conjugated quantum dots to cell tracking in mouse body. Bioconjug Chem 19(2):421–427

    Article  CAS  Google Scholar 

  248. Lin S, Xie X, Patel MR, Yang Y-H, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao J, Wu JC (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7(1):67–67

    Article  CAS  Google Scholar 

  249. Yukawa H, Kagami Y, Watanabe M, Oishi K, Miyamoto Y, Okamoto Y, Tokeshi M, Kaji N, Noguchi H, Ono K, Sawada M, Baba Y, Hamajima N, Hayashi S (2010) Quantum dots labeling using octa-arginine peptides for imaging of adipose tissue-derived stem cells. Biomaterials 31(14):4094–4103

    Article  CAS  Google Scholar 

  250. Chung BG, Kang L, Khademhosseini A (2007) Micro-and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discovery 2(12):1653–1668

    Article  CAS  Google Scholar 

  251. Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295(5557):1009–1014

    Article  CAS  Google Scholar 

  252. Wang P, Zhao L, Liu J, Weir MD, Zhou X, Xu HH (2014) Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells. Bone Res 2:14017

    Article  CAS  Google Scholar 

  253. Tadic D, Epple M (2004) A thorough physicochemical characterisation of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials 25(6):987–994

    Article  CAS  Google Scholar 

  254. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138

    Article  CAS  Google Scholar 

  255. Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y (2015) Nanomaterials and bone regeneration. Bone Res 3:15029

    Article  CAS  Google Scholar 

  256. Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    CAS  Google Scholar 

  257. Kneser U, Schaefer DJ, Polykandriotis E, Horch RE (2006) Tissue engineering of bone: the reconstructive surgeon’s point of view. J Cell Mol Med 10(1):7–19

    Article  CAS  Google Scholar 

  258. Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    Article  CAS  Google Scholar 

  259. Khan Y, Yaszemski MJ, Mikos AG, Laurencin CT (2008) Tissue engineering of bone: material and matrix considerations. JBJS 90:36–42

    Article  Google Scholar 

  260. Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364

    Article  CAS  Google Scholar 

  261. Rezwan K, Chen Q, Blaker J, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27(18):3413–3431

    Article  CAS  Google Scholar 

  262. Williams D (2004) Benefit and risk in tissue engineering. Mater Today 7(5):24–29

    Article  CAS  Google Scholar 

  263. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64(6):789–817

    Article  CAS  Google Scholar 

  264. Mathieu LM, Mueller TL, Bourban P-E, Pioletti DP, Müller R, Månson J-AE (2006) Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials 27(6):905–916

    Article  CAS  Google Scholar 

  265. Boyan BD, Hummert TW, Dean DD, Schwartz Z (1996) Role of material surfaces in regulating bone and cartilage cell response. Biomaterials 17(2):137–146

    Article  CAS  Google Scholar 

  266. Keaveny TM, Hayes WC (1993) Mechanical properties of cortical and trabecular bone. Bone 7:285–344

    Google Scholar 

  267. Li X, Wang L, Fan Y, Feng Q, Cui FZ, Watari F (2013) Nanostructured scaffolds for bone tissue engineering. J Biomed Mater Res A 101(8):2424–2435

    Article  CAS  Google Scholar 

  268. Wolff J (1892) Das Gesetz der Transformation der Knochen (Berlin A. Hirchwild). Translated as: The law of bone remodeling. Springer, Berlin Google Scholar

    Google Scholar 

  269. Wegst U, Ashby M (2004) The mechanical efficiency of natural materials. Philos Mag 84(21):2167–2186

    Article  CAS  Google Scholar 

  270. Hu Y, Grainger DW, Winn SR, Hollinger JO (2002) Fabrication of poly (α-hydroxy acid) foam scaffolds using multiple solvent systems. J Biomed Mater Res A 59(3):563–572

    Article  CAS  Google Scholar 

  271. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  272. Swetha M, Sahithi K, Moorthi A, Srinivasan N, Ramasamy K, Selvamurugan N (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4

    Article  CAS  Google Scholar 

  273. Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Prog Polym Sci 32(7):669–697

    Article  CAS  Google Scholar 

  274. Lu HH, Kofron MD, El-Amin SF, Attawia MA, Laurencin CT (2003) In vitro bone formation using muscle-derived cells: a new paradigm for bone tissue engineering using polymer–bone morphogenetic protein matrices. Biochem Biophys Res Commun 305(4):882–889

    Article  CAS  Google Scholar 

  275. Leenslag JW, Pennings AJ, Bos RR, Rozema FR, Boering G (1987) Resorbable materials of poly (L-lactide): VII. In vivo and in vitro degradation. Biomaterials 8(4):311–314

    Article  CAS  Google Scholar 

  276. Lin FH, Chen TM, Lin CP, Lee CJ (1999) The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artif Organs 23(2):186–194

    Article  CAS  Google Scholar 

  277. Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23(15):3227–3234

    Article  CAS  Google Scholar 

  278. Liao S, Cui F, Zhang W, Feng Q (2004) Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite. J Biomed Mater Res B Appl Biomater 69(2):158–165

    Article  CAS  Google Scholar 

  279. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518

    Article  CAS  Google Scholar 

  280. Hutmacher DW (2006) Scaffolds in tissue engineering bone and cartilage. In: The biomaterials: silver jubilee compendium. Elsevier, Oxford, pp 175–189

    Chapter  Google Scholar 

  281. Goulet RW, Goldstein SA, Ciarelli MJ, Kuhn JL, Brown M, Feldkamp L (1994) The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech 27(4):379–389

    Article  Google Scholar 

  282. Holzapfel GA, Ogden RW (2014) Biomechanics of soft tissue in cardiovascular systems, vol 441. Springer, Wien

    Google Scholar 

  283. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry – part I: stem cell sources. J Prosthodont Res 56(3):151–165

    Article  Google Scholar 

  284. Lombaert IM, Knox SM, Hoffman MP (2011) Salivary gland progenitor cell biology provides a rationale for therapeutic salivary gland regeneration. Oral Dis 17(5):445–449

    Article  CAS  Google Scholar 

  285. Luxameechanporn T, Hadlock T, Shyu J, Cowan D, Faquin W, Varvares M (2006) Successful myoblast transplantation in rat tongue reconstruction. Head Neck 28(6):517–524

    Article  Google Scholar 

  286. Shah R, Sinanan AC, Knowles JC, Hunt NP, Lewis MP (2005) Craniofacial muscle engineering using a 3-dimensional phosphate glass fibre construct. Biomaterials 26(13):1497–1505

    Article  CAS  Google Scholar 

  287. Dormer NH, Busaidy K, Berkland CJ, Detamore MS (2011) Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients. J Oral Maxillofac Surg 69(6):e50–e57

    Article  Google Scholar 

  288. Yu H, Yang X, Cheng J, Wang X, Shen SG (2011) Distraction osteogenesis combined with tissue-engineered cartilage in the reconstruction of condylar osteochondral defect. J Oral Maxillofac Surg 69(12):e558–e564

    Article  Google Scholar 

  289. Egusa H, Sonoyama W, Nishimura M, Atsuta I, Akiyama K (2012) Stem cells in dentistry – part II: clinical applications. J Prosthodont Res 56(4):229–248

    Article  Google Scholar 

  290. Kim SH, Park JK, Hong KS, Jung HS, Seo YK (2013) Immobilization of BMP-2 on a nano-hydroxyapatite-coated titanium surface using a chitosan calcium chelating agent. Int J Artif Organs 36(7):506–517

    Article  CAS  Google Scholar 

  291. De-Deus G, Canabarro A, Alves G, Linhares A, Senne MI, Granjeiro JM (2009) Optimal cytocompatibility of a bioceramic nanoparticulate cement in primary human mesenchymal cells. J Endod 35(10):1387–1390

    Article  Google Scholar 

  292. Yuan Z, Peng B, Jiang H, Bian Z, Yan P (2010) Effect of bioaggregate on mineral-associated gene expression in osteoblast cells. J Endod 36(7):1145–1148

    Article  Google Scholar 

  293. Sun W, Starly B, Nam J, Darling A (2005) Bio-CAD modeling and its applications in computer-aided tissue engineering. Comput Aided Des 37(11):1097–1114

    Article  Google Scholar 

  294. Kim J, Kim HN, Lim K-T, Kim Y, Seonwoo H, Park SH, Lim HJ, Kim D-H, Suh K-Y, Choung P-H (2013) Designing nanotopographical density of extracellular matrix for controlled morphology and function of human mesenchymal stem cells. Sci Rep 3:3552

    Article  Google Scholar 

  295. Fang Z, Starly B, Sun W (2005) Computer-aided characterization for effective mechanical properties of porous tissue scaffolds. Comput Aided Des 37(1):65–72

    Article  Google Scholar 

  296. Li L, Zhou G, Wang Y, Yang G, Ding S, Zhou S (2015) Controlled dual delivery of BMP-2 and dexamethasone by nanoparticle-embedded electrospun nanofibers for the efficient repair of critical-sized rat calvarial defect. Biomaterials 37:218–229

    Article  CAS  Google Scholar 

  297. O’Brien CM, Holmes B, Faucett S, Zhang LG (2014) Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration. Tissue Eng Part B Rev 21(1):103–114

    Article  CAS  Google Scholar 

  298. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773

    Article  CAS  Google Scholar 

  299. Zhang T, Yan KC, Ouyang L, Sun W (2013) Mechanical characterization of bioprinted in vitro soft tissue models. Biofabrication 5(4):045010

    Article  CAS  Google Scholar 

  300. Schantz J-T, Brandwood A, Hutmacher DW, Khor HL, Bittner K (2005) Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling. J Mater Sci Mater Med 16(9):807–819

    Article  CAS  Google Scholar 

  301. Wagner DE, Jones AD, Zhou H, Bhaduri SB (2013) Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater Sci Eng C 33(3):1710–1719

    Article  CAS  Google Scholar 

  302. Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ, Atala A (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001

    Article  CAS  Google Scholar 

  303. Fedorovich NE, Schuurman W, Wijnberg HM, Prins H-J, Van Weeren PR, Malda J, Alblas J, Dhert WJ (2011) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44

    Article  CAS  Google Scholar 

  304. Holmes B, Zhu W, Li J, Lee JD, Zhang LG (2014) Development of novel three-dimensional printed scaffolds for osteochondral regeneration. Tissue Eng A 21(1–2):403–415

    Google Scholar 

  305. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27(19):3580–3588

    CAS  Google Scholar 

  306. Suri S, Han L-H, Zhang W, Singh A, Chen S, Schmidt CE (2011) Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering. Biomed Microdevices 13(6):983–993

    Article  CAS  Google Scholar 

  307. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10(5):1836–1846

    Article  CAS  Google Scholar 

  308. Williams SK, Touroo JS, Church KH, Hoying JB (2013) Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores Open Access 2(6):448–454

    Article  CAS  Google Scholar 

  309. Xu T, Zhao W, Zhu J-M, Albanna MZ, Yoo JJ, Atala A (2013) Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials 34(1):130–139

    Article  CAS  Google Scholar 

  310. Severs NJ (2000) The cardiac muscle cell. BioEssays 22(2):188–199

    Article  CAS  Google Scholar 

  311. American Heart Association (2015) Cardiovascular disease: a costly burden for America – projections through 2035, p 10. http://www.heart.org/idc/groups/heart-public/@wcm/@adv/documents/downloadable/ucm_491543.pdf

  312. Baig MK, Mahon N, McKenna WJ, Caforio ALP, Bonow RO, Francis GS, Gheorghiade M (1998) The pathophysiology of advanced heart failure. Am Heart J 135(6):S216–S230

    Article  CAS  Google Scholar 

  313. Akasha AA, Sotiriadou I, Doss MX, Halbach M, Winkler J, Baunach JJS, Katsen-Globa A, Zimmermann H, Choo Y, Hescheler J, Sachinidis A (2008) Entrapment of embryonic stem cells-derived cardiomyocytes in macroporous biodegradable microspheres: preparation and characterization. Cell Physiol Biochem 22(5–6):665–672

    Article  CAS  Google Scholar 

  314. Alperin C, Zandstra PW, Woodhouse KA (2005) Polyurethane films seeded with embryonic stem cell-derived cardiomyocytes for use in cardiac tissue engineering applications. Biomaterials 26(35):7377–7386

    Article  CAS  Google Scholar 

  315. Gwak S-J, Bhang SH, Kim I-K, Kim S-S, Cho S-W, Jeon O, Yoo KJ, Putnam AJ, Kim B-S (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29(7):844–856

    Article  CAS  Google Scholar 

  316. Ke Q, Yang Y, Rana JS, Chen Y, Morgan JP, Xiao Y-F (2005) Embryonic stem cells cultured in biodegradable scaffold repair infarcted myocardium in mice. Sheng Li Xue Bao 57(6):673–681

    CAS  Google Scholar 

  317. Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, Chiang HHK, Hsu LF, Yang HH, Sung HW (2006) Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials 27(31):5409–5419

    Article  CAS  Google Scholar 

  318. Yang MC, Wang SS, Chou NK, Chi NH, Huang YY, Chang YL, Shieh MJ, Chung TW (2009) The cardiomyogenic differentiation of rat mesenchymal stem cells on silk fibroin-polysaccharide cardiac patches in vitro. Biomaterials 30(22):3757–3765

    Article  CAS  Google Scholar 

  319. Shin M, Ishii O, Sueda T, Vacanti JP (2004) Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 25(17):3717–3723

    Article  CAS  Google Scholar 

  320. Ishii O, Shin M, Sueda T, Vacanti JP (2005) In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix-like topography. J Thorac Cardiovasc Surg 130(5):1358–1363

    Article  Google Scholar 

  321. Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI (2006) Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A 79A(4):963–973

    Article  CAS  Google Scholar 

  322. Zong XH, Bien H, Chung CY, Yin LH, Fang DF, Hsiao BS, Chu B, Entcheva E (2005) Electrospun fine-textured scaffolds for heart tissue constructs. Biomaterials 26(26):5330–5338

    Article  CAS  Google Scholar 

  323. Binsalamah ZM, Paul A, Khan AA, Prakash S, Shum-Tim D (2011) Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat infarct model. Int J Nanomedicine 6:2667–2678

    CAS  Google Scholar 

  324. Hsieh PCH, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116(1):237–248

    Article  CAS  Google Scholar 

  325. Paul A, Nayan M, Khan AA, Shum-Tim D, Prakash S (2012) Angiopoietin-1-expressing adipose stem cells genetically modified with baculovirus nanocomplex: investigation in rat heart with acute infarction. Int J Nanomedicine 7:663–682

    Article  CAS  Google Scholar 

  326. Tokunaga M, Liu ML, Nagai T, Iwanaga K, Matsuura K, Takahashi T, Kanda M, Kondo N, Wang P, Naito AT, Komuro I (2010) Implantation of cardiac progenitor cells using self-assembling peptide improves cardiac function after myocardial infarction. J Mol Cell Cardiol 49(6):972–983

    Article  CAS  Google Scholar 

  327. Simpson D, Liu H, Fan THM, Nerem R, Dudley SC (2007) A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling. Stem Cells 25(9):2350–2357

    Article  Google Scholar 

  328. Lin Y-D, Yeh M-L, Yang Y-J, Tsai D-C, Chu T-Y, Shih Y-Y, Chang M-Y, Liu Y-W, Tang ACL, Chen T-Y, Luo C-Y, Chang K-C, Chen J-H, Wu H-L, Hung T-K, Hsieh PCH (2010) Intramyocardial peptide nanofiber injection improves postinfarction ventricular remodeling and efficacy of bone marrow cell therapy in pigs. Circulation 122(11 suppl 1):S132

    Article  CAS  Google Scholar 

  329. Cui XJ, Xie H, Wang HJ, Guo HD, Zhang JK, Wang C, Tan YZ (2010) Transplantation of mesenchymal stem cells with self-assembling polypeptide scaffolds is conducive to treating myocardial infarction in rats. Tohoku J Exp Med 222(4):281–289

    Article  CAS  Google Scholar 

  330. Guo HD, Cui GH, Wang HJ, Tan YZ (2010) Transplantation of marrow-derived cardiac stem cells carried in designer self-assembling peptide nanofibers improves cardiac function after myocardial infarction. Biochem Biophys Res Commun 399(1):42–48

    Article  CAS  Google Scholar 

  331. Kim DH, Kshitiz, Smith RR, Kim P, Ahn EH, Kim HN, Marban E, Suh KY, Levchenko A (2012) Nanopatterned cardiac cell patches promote stem cell niche formation and myocardial regeneration. Integr Biol 4(9):1019–1033

    Article  CAS  Google Scholar 

  332. Pijnappels DA, Schalij MJ, Ramkisoensing AA, van Tuyn J, de Vries AAF, van der Laarse A, Ypey DL, Atsma DE (2008) Forced alignment of mesenchymal stem cells undergoing cardiomyogenic differentiation affects functional integration with cardiomyocyte cultures. Circ Res 103(2):167–176

    Article  CAS  Google Scholar 

  333. Kang B-J, Kim H, Lee SK, Kim J, Shen Y, Jung S, Kang K-S, Im SG, Lee SY, Choi M, Hwang NS, Cho J-Y (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater 10(7):3007–3017

    Article  CAS  Google Scholar 

  334. Ravichandran R, Sridhar R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2014) Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol Biosci 14(4):515–525

    Article  CAS  Google Scholar 

  335. Park J, Park S, Ryu S, Bhang SH, Kim J, Yoon JK, Park YH, Cho SP, Lee S, Hong BH, Kim BS (2014) Graphene-regulated cardiomyogenic differentiation process of mesenchymal stem cells by enhancing the expression of extracellular matrix proteins and cell signaling molecules. Adv Healthc Mater 3(2):176–181

    Article  CAS  Google Scholar 

  336. Han J, Kim B, Shin J-Y, Ryu S, Noh M, Woo J, Park J-S, Lee Y, Lee N, Hyeon T, Choi D, Kim B-S (2015) Iron oxide nanoparticle-mediated development of cellular gap junction crosstalk to improve mesenchymal stem cells’ therapeutic efficacy for myocardial infarction. ACS Nano 9(3):2805–2819

    Article  CAS  Google Scholar 

  337. Webber MJ, Han XQ, Murthy SNP, Rajangam K, Stupp SI, Lomasney JW (2010) Capturing the stem cell paracrine effect using heparin-presenting nanofibres to treat cardiovascular diseases. J Tissue Eng Regen Med 4(8):600–610

    Article  CAS  Google Scholar 

  338. Lee TJ, Park S, Bhang SH, Yoon JK, Jo I, Jeong GJ, Hong BH, Kim BS (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Biophys Res Commun 452(1):174–180

    Article  CAS  Google Scholar 

  339. Han J, Park J, Kim BS (2015) Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction. Adv Drug Deliv Rev 95:15–28

    Article  CAS  Google Scholar 

  340. Hsiao CW, Bai MY, Chang Y, Chung MF, Lee TY, Wu CT, Maiti B, Liao ZX, Li RK, Sung HW (2013) Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34(4):1063–1072

    Article  CAS  Google Scholar 

  341. Lin YD, Ko MC, Wu ST, Li SF, Hu JF, Lai YJ, Harn HIC, Laio IC, Yeh ML, Yeh HI, Tang MJ, Chang KC, Su FC, Wei EIH, Lee ST, Chen JH, Hoffman AS, Wu WT, Hsieh PCH (2014) A nanopatterned cell-seeded cardiac patch prevents electro-uncoupling and improves the therapeutic efficacy of cardiac repair. Biomater Sci 2(4):567–580

    Article  CAS  Google Scholar 

  342. Piao H, Kwon JS, Piao S, Sohn JH, Lee YS, Bae JW, Hwang KK, Kim DW, Jeon O, Kim BS, Park YB, Cho MC (2007) Effects of cardiac patches engineered with bone marrow-derived mononuclear cells and PGCL scaffolds in a rat myocardial infarction model. Biomaterials 28(4):641–649

    Article  CAS  Google Scholar 

  343. Hwang HJ, Chang W, Song BW, Song H, Cha MJ, Kim IK, Lim S, Choi EJ, Ham O, Lee SY, Shim J, Joung B, Pak HN, Kim SS, Choi BR, Jang Y, Lee MH, Hwang KC (2012) Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment. J Am Coll Cardiol 60(17):1698–1706

    Article  CAS  Google Scholar 

  344. Song H, Hwang HJ, Chang W, Song BW, Cha MJ, Kim IK, Lim S, Choi EJ, Ham O, Lee CY, Park JH, Lee SY, Choi E, Lee C, Lee M, Lee MH, Kim SH, Jang Y, Hwang KC (2011) Cardiomyocytes from phorbol myristate acetate-activated mesenchymal stem cells restore electromechanical function in infarcted rat hearts. Proc Natl Acad Sci U S A 108(1):296–301

    Article  CAS  Google Scholar 

  345. Chen HSV, Kim C, Mercola M (2009) Electrophysiological challenges of cell-based myocardial repair. Circulation 120(24):2496–2508

    Article  Google Scholar 

  346. Stout DA, Basu B, Webster TJ (2011) Poly(lactic-co-glycolic acid): carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater 7(8):3101–3112

    Article  CAS  Google Scholar 

  347. Wickham AM, Islam MM, Mondal D, Phopase J, Sadhu V, Tamas E, Polisetti N, Richter-Dahlfors A, Liedberg B, Griffith M (2014) Polycaprolactone-thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. J Biomed Mater Res B Appl Biomater 102(7):1553–1561

    Article  CAS  Google Scholar 

  348. Martins AM, Eng G, Caridade SG, Mano JF, Reis RL, Vunjak-Novakovic G (2014) Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules 15(2):635–643

    Article  CAS  Google Scholar 

  349. Kharaziha M, Shin SR, Nikkhah M, Topkaya SN, Masoumi N, Annabi N, Dokmeci MR, Khademhosseini A (2014) Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials 35(26):7346–7354

    Article  CAS  Google Scholar 

  350. You JO, Rafat M, Ye GJC, Auguste DT (2011) Nanoengineering the heart: conductive scaffolds enhance connexin 43 expression. Nano Lett 11(9):3643–3648

    Article  CAS  Google Scholar 

  351. Dvir T, Timko BP, Brigham MD, Naik SR, Karajanagi SS, Levy O, Jin HW, Parker KK, Langer R, Kohane DS (2011) Nanowired three-dimensional cardiac patches. Nat Nanotechnol 6(11):720–725

    Article  CAS  Google Scholar 

  352. Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN, Hofmeister W, Lim CC, Wang XT, Sung HJ (2013) Poly(epsilon-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine 8(11):1763–1776

    Article  CAS  Google Scholar 

  353. Park J, Kim YS, Ryu S, Kang WS, Park S, Han J, Jeong HC, Hong BH, Ahn Y, Kim BS (2015) Graphene potentiates the myocardial repair efficacy of mesenchymal stem cells by stimulating the expression of angiogenic growth factors and gap junction protein. Adv Funct Mater 25(17):2590–2600

    Article  CAS  Google Scholar 

  354. Pack DW, Hoffman AS, Pun S, Stayton PS (2005) Design and development of polymers for gene delivery. Nat Rev Drug Discov 4(7):581–593

    Article  CAS  Google Scholar 

  355. Padin-Iruegas ME, Misao Y, Davis ME, Segers VFM, Esposito G, Tokunou T, Urbanek K, Hosoda T, Rota M, Anversa P, Leri A, Lee T, Kajstura J (2009) Cardiac progenitor cells and biotinylated insulin-like growth factor-1 nanofibers improve endogenous and exogenous myocardial regeneration after infarction. Circulation 120(10):876–U115

    Article  CAS  Google Scholar 

  356. Ye L, Haider HK, Tan R, Toh W, Law PK, Tan W, Su L, Zhang W, Ge R, Zhang Y, Lim Y, Sim EKW (2007) Transplantation of nanoparticle transfected skeletal myoblasts overexpressing vascular endothelial growth factor-165 for cardiac repair. Circulation 116(11):I113–I120

    CAS  Google Scholar 

  357. Koiwaya H, Sasaki K, Ueno T, Yokoyama S, Toyama Y, Ohtsuka M, Nakayoshi T, Mitsutake Y, Imaizumi T (2011) Augmented neovascularization with magnetized endothelial progenitor cells in rats with hind-limb ischemia. J Mol Cell Cardiol 51(1):33–40

    Article  CAS  Google Scholar 

  358. Kang HJ, Kim JY, Lee HJ, Kim KH, Kim TY, Lee CS, Lee HC, Park TH, Kim HS, Park YB (2012) Magnetic bionanoparticle enhances homing of endothelial progenitor cells in mouse hindlimb ischemia. Korean Circ J 42(6):390–396

    Article  CAS  Google Scholar 

  359. Zhu P, Weng ZY, Li X, Liu XM, Wu SL, Yeung KWK, Wang XB, Cui ZD, Yang XJ, Chu PK (2016) Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging. Adv Mater Interfaces 3(1)

    Article  CAS  Google Scholar 

  360. Liao QL, Zhang Z, Zhang XH, Mohr M, Zhang Y, Fecht HJ (2014) Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res 7(6):917–928

    Article  CAS  Google Scholar 

  361. Kang Z, Yan XQ, Zhao LQ, Liao QL, Zhao K, Du HW, Zhang XH, Zhang XJ, Zhang Y (2015) Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res 8(6):2004–2014

    Article  CAS  Google Scholar 

  362. Yan ZQ, Zhao AD, Liu XP, Ren JS, Qu XG (2017) A pH-switched mesoporous nanoreactor for synergetic therapy. Nano Res 10(5):1651–1661

    Article  CAS  Google Scholar 

  363. Augustine R, Dan P, Sosnik A, Kalarikkal N, Tran N, Vincent B, Thomas S, Menu P, Rouxel D (2017) Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res 10(10):3358–3376

    Article  CAS  Google Scholar 

  364. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385–406

    CAS  Google Scholar 

  365. Vallee JP, Hauwel M, Lepetit-Coiffe M, Bei W, Montet-Abou K, Meda P, Gardier S, Zammaretti P, Kraehenbuehl TP, Herrmann F, Hubbell JA, Jaconi ME (2012) Embryonic stem cell-based cardiopatches improve cardiac function in infarcted rats. Stem Cells Transl Med 1(3):248–260

    Article  CAS  Google Scholar 

  366. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, Licoccia S, Minieri M, Di Nardo P, Traversa E (2012) Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano 6(5):3767–3775

    Article  CAS  Google Scholar 

  367. Shevach M, Fleischer S, Shapira A, Dvir T (2014) Gold nanoparticle-decellularized matrix hybrids for cardiac tissue engineering. Nano Lett 14(10):5792–5796

    Article  CAS  Google Scholar 

  368. Lakshmanan RAMN (2018) Development of next generation cardiovascular therapeutics through bio-assisted nanotechnology. J Biomed Mater Res B Appl Biomater 106(5):2072–2083

    Article  CAS  Google Scholar 

  369. Li X, Zhou J, Liu Z, Chen J, Lü S, Sun H, Li J, Lin Q, Yang B, Duan C, Xing M, Wang C (2014) A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials 35(22):5679–5688

    Article  CAS  Google Scholar 

  370. Capulli AK, MacQueen LA, Sheehy SP, Parker KK (2016) Fibrous scaffolds for building hearts and heart parts. Adv Drug Deliv Rev 96:83–102

    Article  CAS  Google Scholar 

  371. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354

    Article  CAS  Google Scholar 

  372. Borriello A, Guarino V, Schiavo L, Alvarez-Perez MA, Ambrosio L (2011) Optimizing PANi doped electroactive substrates as patches for the regeneration of cardiac muscle. J Mater Sci Mater Med 22(4):1053–1062

    Article  CAS  Google Scholar 

  373. Orza A, Soritau O, Olenic L, Diudea M, Florea A, Ciuca DR, Mihu C, Casciano D, Biris AS (2011) Electrically conductive gold-coated collagen nanofibers for placental-derived mesenchymal stem cells enhanced differentiation and proliferation. ACS Nano 5(6):4490–4503

    Article  CAS  Google Scholar 

  374. Jung D, Minami I, Patel S, Lee J, Jiang B, Yuan Q, Li L, Kobayashi S, Chen Y, Lee K-B, Nakatsuji N (2012) Incorporation of functionalized gold nanoparticles into nanofibers for enhanced attachment and differentiation of mammalian cells. J Nanobiotechnol 10:23–23

    Article  CAS  Google Scholar 

  375. Miyagawa S, Domae K, Yoshikawa Y, Fukushima S, Nakamura T, Saito A, Sakata Y, Hamada S, Toda K, Pak K, Takeuchi M, Sawa Y (2017) Phase I clinical trial of autologous stem cell-sheet transplantation therapy for treating cardiomyopathy. J Am Heart Assoc 6(4)

    Google Scholar 

  376. Yang X, Pabon L, Murry CE (2014) Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 114(3):511–523

    Article  CAS  Google Scholar 

  377. Rong Z, Wang M, Hu Z, Stradner M, Zhu S, Kong H, Yi H, Goldrath A, Yang Y-G, Xu Y, Fu X (2014) An effective approach to prevent immune rejection of human ESC-derived allografts. Cell Stem Cell 14(1):121–130

    Article  CAS  Google Scholar 

  378. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687

    Article  CAS  Google Scholar 

  379. Akbari M, Tamayol A, Laforte V, Annabi N, Hassani Najafabadi A, Khademhosseini A, Juncker D (2014) Composite living fibers for creating tissue constructs using textile techniques. Adv Funct Mater 24(26):4060–4067

    Article  CAS  Google Scholar 

  380. Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R (2014) 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 16:247–276

    Article  CAS  Google Scholar 

  381. Vunjak-Novakovic G, Lui KO, Tandon N, Chien KR (2011) Bioengineering heart muscle: a paradigm for regenerative medicine. Annu Rev Biomed Eng 13:245–267

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Woo Kim , Raj Rao or Hanna Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sivaraman, S., Sinha, A., Lim, KT., Kim, JW., Rao, R., Jensen, H. (2019). Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. In: Kumar, C. (eds) Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59596-1_1

Download citation

Publish with us

Policies and ethics