Skip to main content

Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Perovskite solar cells (PSCs) have attracted more attention recently due to their high efficiency, low cost, and long charge carrier diffusion length. Generally, PSCs consist of three layers: the electron transport layer (ETL), the absorber layer (perovskite), and the hole transfer layer (HTL). To improve the device efficiency and enhance the cell stability of PSCs, great efforts toward developing novel and efficient electron and hole-transporting materials are needed. Due to its unique properties such as high efficiency, simple process and low-cost organic-inorganic halide perovskite solar cells (PSCs) provide great potential for the photovoltaics industry. Particularly, efficient interfacial layers are very important to enhance PSCs, as charge carriers need to have smooth transport pathway, and this can be achieved by manipulating the interfacial layers and by choosing suitable interfacial layers.

Author Contribution

The first draft was written by SA and AMM. The final draft was reviewed and edited by FA and MA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  CAS  Google Scholar 

  2. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)

    Article  CAS  Google Scholar 

  3. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, M. Grätzel, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  4. W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348(6240), 1234–1237 (2015)

    Article  CAS  Google Scholar 

  5. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  CAS  Google Scholar 

  6. NREL Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/images/efficiency-chart.png. Accessed Apr 2018

  7. J. You, L. Meng, T.B. Song, T.F. Guo, Y.M. Yang, W.H. Chang, Y. Liu, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11(1), 75 (2016)

    Article  Google Scholar 

  8. H. Zhou, Q. Chen, G. Li, S. Luo, T.B. Song, H.S. Duan, Y. Yang, Interface engineering of highly efficient perovskite solar cells. Science 345(6196), 542–546 (2014)

    Article  CAS  Google Scholar 

  9. S.K. Pathak, A. Abate, P. Ruckdeschel, B. Roose, K.C. Gödel, Y. Vaynzof, A. Sepe, Performance and stability enhancement of dye-sensitized and perovskite solar cells by Al doping of TiO2. Adv. Funct. Mater. 24(38), 6046–6055 (2014)

    Article  CAS  Google Scholar 

  10. H. Sun, J. Deng, L. Qiu, X. Fang, H. Peng, Recent progress in solar cells based on one-dimensional nanomaterials. Energy Environ. Sci. 8(4), 1139–1159 (2015)

    Article  CAS  Google Scholar 

  11. C.C. Chueh, C.Z. Li, A.K.Y. Jen, Recent progress and perspective in solution-processed interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ. Sci. 8(4), 1160–1189 (2015)

    Article  CAS  Google Scholar 

  12. J. You, Z. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, Y. Yang, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano 8(2), 1674–1680 (2014)

    Article  CAS  Google Scholar 

  13. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat. Commun. 4, 2885 (2013)

    Article  Google Scholar 

  14. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, J. You, Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2(1), 16177 (2017)

    Article  CAS  Google Scholar 

  15. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133 (2014)

    Article  CAS  Google Scholar 

  16. S.S. Mali, C.S. Shim, C.K. Hong, Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells. Sci. Rep. 5, 11424 (2015)

    Article  Google Scholar 

  17. S.S. Shin, W.S. Yang, J.H. Noh, J.H. Suk, N.J. Jeon, J.H. Park, S.I. Seok, High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 C. Nat. Commun. 6, 7410 (2015)

    Article  CAS  Google Scholar 

  18. L. Zhu, J. Ye, X. Zhang, H. Zheng, G. Liu, X. Pan, S. Dai, Performance enhancement of perovskite solar cells using a La-doped BaSnO3 electron transport layer. J. Mater. Chem. A 5(7), 3675–3682 (2017)

    Article  CAS  Google Scholar 

  19. S.S. Shin, E.J. Yeom, W.S. Yang, S. Hur, M.G. Kim, J. Im, S.I. Seok, Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells. Science 356(6334), 167–171 (2017)

    Article  CAS  Google Scholar 

  20. A. Bera, K. Wu, A. Sheikh, E. Alarousu, O.F. Mohammed, T. Wu, Perovskite oxide SrTiO3 as an efficient electron transporter for hybrid perovskite solar cells. J. Phys. Chem. C 118(49), 28494–28501 (2014)

    Article  CAS  Google Scholar 

  21. J. Liu, C. Gao, L. Luo, Q. Ye, X. He, L. Ouyang, W. Lau, Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells. J. Mater. Chem. A 3(22), 11750–11755 (2015)

    Article  CAS  Google Scholar 

  22. W.A. Dunlap-Shohl, R. Younts, B. Gautam, K. Gundogdu, D.B. Mitzi, Effects of Cd diffusion and doping in high-performance perovskite solar cells using CdS as electron transport layer. J. Phys. Chem. C 120(30), 16437–16445 (2016)

    Article  CAS  Google Scholar 

  23. G. Yang, H. Tao, P. Qin, W. Ke, G. Fang, Recent progress in electron transport layers for efficient perovskite solar cells. J. Mater. Chem. A 4(11), 3970–3990 (2016)

    Article  CAS  Google Scholar 

  24. S. Ryu, J.H. Noh, N.J. Jeon, Y.C. Kim, W.S. Yang, J. Seo, S.I. Seok, Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. 7(8), 2614–2618 (2014)

    Article  CAS  Google Scholar 

  25. A.R.B.M. Yusoff, M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications. J. Phys. Chem. Lett. 7(5), 851–866 (2016)

    Article  CAS  Google Scholar 

  26. Y.F. Chiang, J.Y. Jeng, M.H. Lee, S.R. Peng, P. Chen, T.F. Guo, C.M. Hsu, High voltage and efficient bilayer heterojunction solar cells based on an organic–inorganic hybrid perovskite absorber with a low-cost flexible substrate. Phys. Chem. Chem. Phys. 16(13), 6033–6040 (2014)

    Article  CAS  Google Scholar 

  27. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, H.J. Snaith, Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151–157 (2014)

    Article  CAS  Google Scholar 

  28. S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Band-edge engineered hybrid structures for dye-sensitized solar cells based on SnO2 nanowires. Adv. Funct. Mater. 18(16), 2411–2418 (2008)

    Article  CAS  Google Scholar 

  29. N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, Compositional engineering of perovskite materials for high performance solar cells. Nature 517(7535), 476 (2015)

    Article  CAS  Google Scholar 

  30. D. Bi, S.J. Moon, L. Häggman, G. Boschloo, L. Yang, E.M. Johansson, A. Hagfeldt, Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures. RSC Adv. 3(41), 18762–18766 (2013)

    Article  CAS  Google Scholar 

  31. Z.M. Beiley, M.D. McGehee, Modeling low cost hybrid tandem photovoltaics with the potential for efficiencies exceeding 20%. Energy Environ. Sci. 5(11), 9173–9179 (2012)

    Article  CAS  Google Scholar 

  32. C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G.M. Espallargas, A. Garcia, P. Reinecke, H.J. Bolink, Flexible high efficiency perovskite solar cells. Energy Environ. Sci. 7(3), 994–997 (2014)

    Article  Google Scholar 

  33. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)

    Article  Google Scholar 

  34. H. Tang, K. Prasad, R. Sanjines, P.E. Schmid, F. Levy, Electrical and optical properties of TiO2 anatase thin films. J. Appl. Phys. 75(4), 2042–2047 (1994)

    Article  CAS  Google Scholar 

  35. H.S. Bae, M.H. Yoon, J.H. Kim, S. Im, Photodetecting properties of ZnO-based thin-film transistors. Appl. Phys. Lett. 83(25), 5313–5315 (2003)

    Article  CAS  Google Scholar 

  36. J. Yang, B.D. Siempelkamp, E. Mosconi, F. De Angelis, T.L. Kelly, Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem. Mater. 27(12), 4229–4236 (2015)

    Article  CAS  Google Scholar 

  37. L.Q. Zhang, X.W. Zhang, Z.G. Yin, Q. Jiang, X. Liu, J.H. Meng, H.L. Wang, Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A 3(23), 12133–12138 (2015)

    Article  CAS  Google Scholar 

  38. L. Wang, W. Fu, Z. Gu, C. Fan, X. Yang, H. Li, H. Chen, Low temperature solution processed planar heterojunction perovskite solar cells with a CdSe nanocrystal as an electron transport/extraction layer. J. Mater. Chem. C 2(43), 9087–9090 (2014)

    Article  CAS  Google Scholar 

  39. A.J. Nozik, R. Memming, Physical chemistry of semiconductor− liquid interfaces. J. Phys. Chem. 100(31), 13061–13078 (1996)

    Article  CAS  Google Scholar 

  40. B. Bob, T.B. Song, C.C. Chen, Z. Xu, Y. Yang, Nanoscale dispersions of gelled Sno2: material properties and device applications. Chem. Mater. 25(23), 4725–4730 (2013)

    Article  CAS  Google Scholar 

  41. H.J. Snaith, C. Ducati, SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano Lett. 10(4), 1259–1265 (2010)

    Article  CAS  Google Scholar 

  42. C. Liang, P. Li, Y. Zhang, H. Gu, Q. Cai, X. Liu, G. Shao, Mild solution-processed metal-doped TiO2 compact layers for hysteresis-less and performance-enhanced perovskite solar cells. J. Power Sources 372, 235–244 (2017)

    Article  CAS  Google Scholar 

  43. P. Li, C. Liang, B. Bao, Y. Li, X. Hu, Y. Wang, Y. Song, Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells. Nano Energy 46, 203–211 (2018)

    Article  CAS  Google Scholar 

  44. C. Liang, P. Li, H. Gu, Y. Zhang, F. Li, Y. Song, G. Xing, One-step inkjet printed perovskite in air for efficient light harvesting. Solar RRL 2(2), 1700217 (2018)

    Article  Google Scholar 

  45. C. Liang, Z. Wu, P. Li, J. Fan, Y. Zhang, G. Shao, Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl. Surf. Sci. 391, 337–344 (2017)

    Article  CAS  Google Scholar 

  46. L. Wang, Z. Yuan, T.A. Egerton, Comparison of nano-particulate TiO2 prepared from titanium tetrachloride and titanium tetraisopropoxide. Mater. Chem. Phys. 133(1), 304–310 (2012)

    Article  CAS  Google Scholar 

  47. J.H. Heo, M.S. You, M.H. Chang, W. Yin, T.K. Ahn, S.J. Lee, S.H. Im, Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode. Nano Energy 15, 530–539 (2015)

    Article  CAS  Google Scholar 

  48. D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, G.W. Watson, Band alignment of rutile and anatase TiO2. Nat. Mater. 12(9), 798 (2013)

    Article  CAS  Google Scholar 

  49. H. Tao, Z. Ma, G. Yang, H. Wang, H. Long, H. Zhao, G. Fang, Room-temperature processed tin oxide thin film as effective hole blocking layer for planar perovskite solar cells. Appl. Surf. Sci. 434, 1336–1343 (2018)

    Article  CAS  Google Scholar 

  50. Q. Yue, J. Duan, L. Zhu, K. Zhang, J. Zhang, H. Wang, Effect of HCl etching on TiO2 nanorod-based perovskite solar cells. J. Mater. Sci. 53(21), 15257–15270 (2018)

    Article  CAS  Google Scholar 

  51. D. Bi, C. Yi, J. Luo, J.D. Décoppet, F. Zhang, S.M. Zakeeruddin, M. Grätzel, Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1(10), 16142 (2016)

    Article  CAS  Google Scholar 

  52. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, L. Spiccia, A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53(37), 9898–9903 (2014)

    Article  CAS  Google Scholar 

  53. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, J. Huang, Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014)

    Article  CAS  Google Scholar 

  54. Q. Cai, Y. Zhang, C. Liang, P. Li, H. Gu, X. Liu, G. Shao, Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature. Electrochim. Acta 261, 227–235 (2018)

    Article  CAS  Google Scholar 

  55. Y. Wu, F. Xie, H. Chen, X. Yang, H. Su, M. Cai, L. Han, Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering. Adv. Mater. 29(28), 1701073 (2017)

    Article  Google Scholar 

  56. F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, T.M. Brown, Flexible perovskite photovoltaic modules and solar cells based on atomic layer deposited compact layers and UV-irradiated TiO2 scaffolds on plastic substrates. Adv. Energy Mater. 5(8), 1401808 (2015)

    Article  Google Scholar 

  57. D. Yang, R. Yang, J. Zhang, Z. Yang, S.F. Liu, C. Li, High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy Environ. Sci. 8(11), 3208–3214 (2015)

    Article  CAS  Google Scholar 

  58. K. Wang, Y. Shi, Q. Dong, Y. Li, S. Wang, X. Yu, T. Ma, Low-temperature and solution-processed amorphous WO X as electron-selective layer for perovskite solar cells. J. Phys. Chem. Lett. 6(5), 755–759 (2015)

    Article  CAS  Google Scholar 

  59. J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, G. Fang, Performance enhancement of perovskite solar cells with Mg-doped TiO2 compact film as the hole-blocking layer. Appl. Phys. Lett. 106(12), 121104 (2015)

    Article  Google Scholar 

  60. Z. Xu, X. Yin, Y. Guo, Y. Pu, M. He, Ru-doping in TiO2 electron transport layers of planar heterojunction perovskite solar cells for enhanced performance. J. Mater. Chem. C 6(17), 4746–4752 (2018)

    Article  CAS  Google Scholar 

  61. B.X. Chen, H.S. Rao, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction. J. Mater. Chem. A 4(15), 5647–5653 (2016)

    Article  CAS  Google Scholar 

  62. R. Ranjan, A. Prakash, A. Singh, A. Singh, A. Garg, R.K. Gupta, Effect of tantalum doping in a TiO2 compact layer on the performance of planar spiro-OMeTAD free perovskite solar cells. J. Mater. Chem. A 6(3), 1037–1047 (2018)

    Article  CAS  Google Scholar 

  63. D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, Z.D. Chen, Efficient planar heterojunction perovskite solar cells with Li-doped compact TiO2 layer. Nano Energy 31, 462–468 (2017)

    Article  CAS  Google Scholar 

  64. J. Peng, T. Duong, X. Zhou, H. Shen, Y. Wu, H.K. Mulmudi, K.J. Weber, Efficient indium-doped TiOx electron transport layers for high-performance perovskite solar cells and perovskite-silicon tandems. Adv. Energy Mater. 7(4), 1601768 (2017)

    Article  Google Scholar 

  65. X.X. Gao, Q.Q. Ge, D.J. Xue, J. Ding, J.Y. Ma, Y.X. Chen, J.S. Hu, Tuning the fermi-level of TiO2 mesoporous layer by lanthanum doping towards efficient perovskite solar cells. Nanoscale 8(38), 16881–16885 (2016)

    Article  CAS  Google Scholar 

  66. X. Gu, Y. Wang, T. Zhang, D. Liu, R. Zhang, P. Zhang, S. Li, Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells. J. Mater. Chem. C 5(41), 10754–10760 (2017)

    Article  CAS  Google Scholar 

  67. M. Lv, W. Lv, X. Fang, P. Sun, B. Lin, S. Zhang, N. Yuan, Performance enhancement of perovskite solar cells with a modified TiO2 electron transport layer using Zn-based additives. RSC Adv. 6(41), 35044–35050 (2016)

    Article  CAS  Google Scholar 

  68. K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H.J. Snaith, Sub-150 C processed meso-superstructured perovskite solar cells with enhanced efficiency. Energy Environ. Sci. 7(3), 1142–1147 (2014)

    Article  CAS  Google Scholar 

  69. J.T.W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, R.J. Nicholas, Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724–730 (2013)

    Article  Google Scholar 

  70. M. Thambidurai, J.Y. Kim, Y. Ko, H.J. Song, H. Shin, J. Song, C. Lee, High-efficiency inverted organic solar cells with polyethylene oxide-modified Zn-doped TiO2 as an interfacial electron transport layer. Nanoscale 6(15), 8585–8589 (2014)

    Article  CAS  Google Scholar 

  71. C.X. Xu, X.W. Sun, Z.L. Dong, G.P. Zhu, Y.P. Cui, Zinc oxide hexagram whiskers. Appl. Phys. Lett. 88(9), 093101 (2006)

    Article  Google Scholar 

  72. L. Wu, Y. Wu, X. Pan, F. Kong, Synthesis of ZnO nanorod and the annealing effect on its photoluminescence property. Opt. Mater. 28(4), 418–422 (2006)

    Article  Google Scholar 

  73. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, G. Yang, Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. J. Am. Chem. Soc. 137(21), 6730–6733 (2015)

    Article  CAS  Google Scholar 

  74. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8(2), 128 (2014)

    Article  CAS  Google Scholar 

  75. Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process. Energy Environ. Sci. 7(7), 2359–2365 (2014)

    Article  CAS  Google Scholar 

  76. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013)

    Article  CAS  Google Scholar 

  77. M.H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P.P. Boix, N. Mathews, Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem. Commun. 49(94), 11089–11091 (2013)

    Article  CAS  Google Scholar 

  78. D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E.M. Johansson, A. Hagfeldt, Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells. Nanoscale 5(23), 11686–11691 (2013)

    Article  CAS  Google Scholar 

  79. J. Kim, G. Kim, T.K. Kim, S. Kwon, H. Back, J. Lee, K. Lee, Efficient planar-heterojunction perovskite solar cells achieved via interfacial modification of a sol–gel ZnO electron collection layer. J. Mater. Chem. A 2(41), 17291–17296 (2014)

    Article  CAS  Google Scholar 

  80. X. Dong, H. Hu, B. Lin, J. Ding, N. Yuan, The effect of ALD-Zno layers on the formation of CH3NH3PbI3 with different perovskite precursors and sintering temperatures. Chem. Commun. 50(92), 14405–14408 (2014)

    Article  CAS  Google Scholar 

  81. L. Liang, Z. Huang, L. Cai, W. Chen, B. Wang, K. Chen, B. Fan, Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl. Mater. Interfaces 6(23), 20585–20589 (2014)

    Article  CAS  Google Scholar 

  82. K. Ellmer, Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties. J. Phys. D. Appl. Phys. 33(4), R17 (2000)

    Article  CAS  Google Scholar 

  83. Liu, Y., Li, Y., and Zeng, H. (2013). ZnO-based transparent conductive thin films: doping, performance, and processing. J. Nanomater., 2013

    Google Scholar 

  84. J.A. Sans, J.F. Sánchez-Royo, A. Segura, G. Tobias, E. Canadell, Chemical effects on the optical band-gap of heavily doped ZnO: M III (M= Al, Ga, In): an investigation by means of photoelectron spectroscopy, optical measurements under pressure, and band structure calculations. Phys. Rev. B 79(19), 195105 (2009)

    Article  Google Scholar 

  85. J.L. Zhao, X.W. Sun, H. Ryu, Y.B. Moon, Thermally stable transparent conducting and highly infrared reflective Ga-doped ZnO thin films by metal organic chemical vapor deposition. Opt. Mater. 33(6), 768–772 (2011)

    Article  CAS  Google Scholar 

  86. K. Mahmood, B.S. Swain, H.S. Jung, Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale 6(15), 9127–9138 (2014)

    Article  CAS  Google Scholar 

  87. J. Dong, J. Shi, D. Li, Y. Luo, Q. Meng, Controlling the conduction band offset for highly efficient ZnO nanorods based perovskite solar cell. Appl. Phys. Lett. 107(7), 073507 (2015)

    Article  Google Scholar 

  88. H. Kang, S. Hong, J. Lee, K. Lee, Electrostatically self-assembled nonconjugated polyelectrolytes as an ideal interfacial layer for inverted polymer solar cells. Adv. Mater. 24(22), 3005–3009 (2012)

    Article  CAS  Google Scholar 

  89. J.C. Yu, D.B. Kim, G. Baek, B.R. Lee, E.D. Jung, S. Lee, M.H. Song, High-performance planar perovskite optoelectronic devices: a morphological and interfacial control by polar solvent treatment. Adv. Mater. 27(23), 3492–3500 (2015)

    Article  CAS  Google Scholar 

  90. Y. Zhou, C. Fuentes-Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, M. Fenoll, A universal method to produce low–work function electrodes for organic electronics. Science 336(6079), 327–332 (2012)

    Article  CAS  Google Scholar 

  91. L. Zuo, Z. Gu, T. Ye, W. Fu, G. Wu, H. Li, H. Chen, Enhanced photovoltaic performance of CH3NH3PbI3 perovskite solar cells through interfacial engineering using self-assembling monolayer. J. Am. Chem. Soc. 137(7), 2674–2679 (2015)

    Article  CAS  Google Scholar 

  92. Z.L. Tseng, C.H. Chiang, C.G. Wu, Surface engineering of ZnO thin film for high efficiency planar perovskite solar cells. Sci. Rep. 5, 13211 (2015)

    Article  CAS  Google Scholar 

  93. Y. Cheng, Q.D. Yang, J. Xiao, Q. Xue, H.W. Li, Z. Guan, S.W. Tsang, Decomposition of organometal halide perovskite films on zinc oxide nanoparticles. ACS Appl. Mater. Interfaces 7(36), 19986–19993 (2015)

    Article  Google Scholar 

  94. Y. Li, J. Zhu, Y. Huang, F. Liu, M. Lv, S. Chen, S. Dai, Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells. RSC Adv. 5(36), 28424–28429 (2015)

    Article  CAS  Google Scholar 

  95. Q. Dong, Y. Shi, K. Wang, Y. Li, S. Wang, H. Zhang, T. Ma, Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J. Phys. Chem. C 119(19), 10212–10217 (2015)

    Article  CAS  Google Scholar 

  96. H.S. Rao, B.X. Chen, W.G. Li, Y.F. Xu, H.Y. Chen, D.B. Kuang, C.Y. Su, Improving the extraction of photogenerated electrons with SnO2 nanocolloids for efficient planar perovskite solar cells. Adv. Funct. Mater. 25(46), 7200–7207 (2015)

    Article  CAS  Google Scholar 

  97. J. Song, E. Zheng, J. Bian, X.F. Wang, W. Tian, Y. Sanehira, T. Miyasaka, Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J. Mater. Chem. A 3(20), 10837–10844 (2015)

    Article  CAS  Google Scholar 

  98. J.P.C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, A. Petrozza, Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8(10), 2928–2934 (2015)

    Article  Google Scholar 

  99. E.H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, J.P. Correa-Baena, Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9(10), 3128–3134 (2016)

    Article  CAS  Google Scholar 

  100. S. Pitchaiya, M. Natarajan, A review on the classification of organic /inorganic /carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem.. King Saud University (2018). https://doi.org/10.1016/j.arabjc.2018.06.006

  101. P. Dhingra, P. Singh, J.S. Rana, A. Garg, P. Kar, Hole-transporting materials for perovskite-sensitized solar cells. Energy Technology. 4(8), 891–938 (2016). https://doi.org/10.1002/ente.201500534

  102. X. Zhao, M. Wang, Organic hole-transporting materials for efficient perovskite solar cells. Materials today energy. 7, 208–220 (2018). https://doi.org/10.1016/j.mtener.2017.09.011. Elsevier Ltd

  103. Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-mende, T.M. Brown, R. Jose, Nano energy advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy. 34, 271–305 (2017). https://doi.org/10.1016/j.nanoen.2017.02.025. Nov 2016. Elsevier Ltd

  104. D. Zhao, M. Sexton, H. Park, G. Baure, C.J. Nino, F. So, High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Advanced Energy Materials. 5(6), 1401855 (2015). https://doi.org/10.1002/aenm.201401855

  105. L. Cali, S. Kazim, M. Gratzel, S. Ahmad, Hole-transport materials for perovskite solar cells. Angewandte Chemie International Edition. 55(47), 14522–14545 (2016). https://doi.org/10.1002/anie.201601757

  106. W. Yan, S. Ye, Y. Li,W. Sun, H. Rao, Z. Liu, Z. Bian, C. Hung, Hole-transporting materials in inverted planar perovskite solar cells. Advanced Energy Materials. 6(17), 1600474 (2016). https://doi.org/10.1002/aenm.201600474

  107. A.S. Subbiah, A. Halder, S. Ghosh, N. Mahuli, G. Hodes, S.K. Sarkar, inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5(10), 1748-53 (2014).

    Google Scholar 

  108. R. Rajeswari, M. Mrinalini, S. Prasanthkumar, L. Giribabu, Emerging of inorganic hole transporting materials for perovskite solar cells, 1–20 (2017). https://doi.org/10.1002/tcr.201600117

  109. J.H. Kim, P. Liang, S.T. Williams, N. Cho, C. Chueh, M.S. Glaz, D.S. Ginger, A.K.Y. Jen, High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Advanced materials, 27(4), 695–701 (2014). https://doi.org/10.1002/adma.201404189

  110. V.P.S. Perera, K. Tennakone, Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector. Solar Energy Materials and Solar Cells. 79(2), 249–255 (2003). https://doi.org/10.1016/S0927-0248(03)00103-X

  111. W.Y. Chen, L.L. Deng, S.M. Dai, X. Wang, C.B. Tian, X.X. Zhan, S.Y. Xie, R.B. Huangb, L.S. Zheng, low-cost solution-processed copper iodide as an alternative to PEDOT: PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A., 3(38), 19353-9 (2015). https://doi.org/10.1039/C5TA05286F

  112. Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, H. Zhou, Towards printed perovskite solar cells with cuprous oxide hole transporting layers : a theoretical design. Semicond. Sci. Technol. 30(5), 54004 (2015). https://doi.org/10.1088/0268-1242/30/5/054004. IOP Publishing

    Article  CAS  Google Scholar 

  113. B.A. Nejand, V. Ahmadi, S. Gharibzadeh, Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. Chem Sus Chem. 9(3), 302–313 (2016). https://doi.org/10.1002/cssc.201501273

  114. P. Docampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 1–6 (2013). https://doi.org/10.1038/ncomms3761. Nature Publishing Group

    Article  CAS  Google Scholar 

  115. J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–64 (2013)https://doi.org/10.1021/ja411014k

Download references

Acknowledgments

The authors wish to thank the Ministry of Education (MOE) Malaysia [FRGS: R. J130000.7851.5F007] and Universiti Teknologi Malaysia (UTM) [GUP: Q.J130000.2513.20H63 and Q. J130000.2546.18H39] for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhana Aziz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mhamad, S.A., Mohammed, A.M., Aziz, M., Aziz, F. (2019). Impact of Electron Transport Layers (ETLs) and Hole Transport Layer (HTLs) on Perovskite Solar Cells Performance. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_8

Download citation

Publish with us

Policies and ethics