Skip to main content

Strategies for Improving Solar Energy Conversion: Nanostructured Materials and Processing Techniques

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

Organic photovoltaics, the technology to convert sunlight into electricity by employing thin films of organic semiconductors, has received increased interest due to innovations in nanomaterials and processing methods. These technological improvements have the potential to advance a new generation of low-cost, solar-powered products with small form factors. Here, we review the photophysical and chemical concepts of organic photovoltaics and discuss some recent synthesis and fabrication results as well as future challenges.

Author Contribution

S. Yoon and N. Mackie wrote and edited the first draft based on research and review data. M.C. So wrote, revised, and submitted the manuscript to the publishers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Ahn, S.M. Kang, J.W. Lee, M. Choi, N.G. Park, Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on the photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 3, 19901–19906 (2015)

    Article  CAS  Google Scholar 

  2. J.L. Barnett, V.L. Cherrette, C.J. Hutcherson, M.C. So, Effects of solution-based fabrication conditions on morphology of lead halide perovskite thin film solar cells. Adv. Mater. Sci. Eng. (2016). https://doi.org/10.1155/2016/4126163

  3. N.P. Pellet, P. Gao, P. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, M. Grätzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014)

    Article  CAS  Google Scholar 

  4. S. Jin, H.J. Son, O.K. Farha, G.P. Wiederrecht, Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 135(3), 955–958 (2013)

    Article  CAS  Google Scholar 

  5. G. Lu, S. Li, Z. Guo, et al., Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 4, 310 (2010)

    Article  Google Scholar 

  6. J. Lin, X. Hu, P. Zhang, et al., Triplet excitation energy dynamics in metal-organic frameworks. J. Phys. Chem. C 117, 22250 (2013)

    Article  CAS  Google Scholar 

  7. C.A. Kent, D. Liu, A. Ito, et al., Rapid energy transfer in non-porous metal-organic frameworks with caged Ru(bpy)32+ chromophores: Oxygen trapping and luminescence quenching. J. Mater. Chem. A 1, 14982–14989 (2013)

    Article  CAS  Google Scholar 

  8. W.A. Maza, S.R. Ahrenholtz, C.C. Epley, C.S. Day, A.J. Morris, Solvothermal growth and photophysical characterization of a ruthenium(II) tris-(2,2′-bipyridine)-doped zirconium UiO-67 metal-organic framework thin film. J. Phys. Chem. C 118, 14200–14210 (2014)

    Article  CAS  Google Scholar 

  9. W.A. Maza, A.J. Morris, Photophysical characterization of a ruthenium(II) tris-(2,2′-bipyridine)-doped zirconium UiO-67 metal-organic framework. J. Phys. Chem. C 118, 8803–8817 (2014)

    Article  CAS  Google Scholar 

  10. D.E. Williams, J.A. Rietman, J.M. Maier, et al., Energy transfer on demand: photoswitch-directed behavior of metal-porphyrin frameworks. J. Am. Chem. Soc. 136, 11886–11889 (2014)

    Article  CAS  Google Scholar 

  11. J.T. Joyce, F.R. Laffir, C. Silien, Layer-by-layer growth and photocurrent generation in metal-organic coordination films. J. Phys. Chem. C 117, 12502–12509 (2013)

    Article  CAS  Google Scholar 

  12. D.Y. Lee, D.V. Shinde, S.J. Yoon, et al., Cu-based metal-organic frameworks for photovoltaic application. J. Phys. Chem. C 118, 16328–16334 (2014)

    Article  CAS  Google Scholar 

  13. K. Leong, M.E. Foster, B.M. Wong, et al., Energy and charge transfer by donor-acceptor pairs confined in a metal-organic framework: a spectroscopic and computational investigation. J. Mater. Chem. A 2, 3389–3398 (2014)

    Article  CAS  Google Scholar 

  14. C.Y. Lee, O.K. Farha, B.J. Hong, et al., Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J. Am. Chem. Soc. 133, 15858 (2011)

    Article  CAS  Google Scholar 

  15. M.C. So, S. Jin, H.J. Son, et al., Layer-by-layer fabrication of an oriented thin film based on a porphyrin-containing metal-organic framework. J. Am. Chem. Soc. 135, 15698 (2013)

    Article  CAS  Google Scholar 

  16. G. McDermott, S. Prince, A. Freer, et al., Crystal structure of an integral membrane light-harvesting complex from photosynthetic bacteria. Nature 374, 517 (1995)

    Article  CAS  Google Scholar 

  17. S. Patwardhan, S. Jin, H.J. Son, G.C. Schatz, Ultrafast energy migration in porphyrin-based metal-organic frameworks (MOFs). MRS Online Proc. Libr. 1539, Mrss13-1539-d06-06 (2013)

    Google Scholar 

  18. C.B. Murphy, Y. Zhang, T. Troxler, et al., Probing förster and dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J. Phys. Chem. B 108, 1537 (2004)

    Google Scholar 

  19. J. Breu, C. Kratzer, H. Yersin, Crystal engineering as a tool for directed radiationless energy transfer in layered {Λ-[Ru (bpy)3] Δ-[Os (bpy)3]}(PF6) 4. J. Am. Chem. Soc. 122, 2548 (2000)

    Article  CAS  Google Scholar 

  20. M. Devenney, L.A. Worl, S. Gould, et al., Excited state interactions in electropolymerized thin films of RuII, OsII, and ZnII polypyridyl complexes. J. Phys. Chem. A 101, 4535 (1997)

    Article  CAS  Google Scholar 

  21. C.N. Fleming, P. Jang, T.J. Meyer, J.M. Papanikolas, Energy migration dynamics in a Ru (II)-and Os (II)-based antenna polymer embedded in a disordered, rigid medium. J. Phys. Chem. B 108, 2205 (2004)

    Article  CAS  Google Scholar 

  22. C.N. Fleming, K.A. Maxwell, J.M. DeSimone, T.J. Meyer, J.M. Papanikolas, Ultrafast excited-state energy migration dynamics in an efficient light-harvesting antenna polymer based on Ru (II) and Os (II) polypyridyl complexes. J. Am. Chem. Soc. 123, 10336 (2001)

    Article  CAS  Google Scholar 

  23. N. Ikeda, A. Yoshimura, M. Tsushima, T. Ohno, Hopping and annihilation of 3MLCT in the crystalline solid of [Ru (bpy) 3] X2 (X= Cl-, ClO4-and PF6-). J. Phys. Chem. A 104, 6158 (2000)

    Article  CAS  Google Scholar 

  24. C.A. Kent, D. Liu, L. Ma, J.M. Papanikolas, T.J. Meyer, W. Lin, Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc. 133, 12940 (2011)

    Article  CAS  Google Scholar 

  25. C.A. Kent, D. Liu, T.J. Meyer, W. Lin, Amplified luminescence quenching of phosphorescent metal-organic frameworks. J. Am. Chem. Soc. 134, 3991 (2012)

    Article  CAS  Google Scholar 

  26. C.A. Kent, B.P. Mehl, L. Ma, et al., Energy transfer dynamics in metal-organic frameworks. J. Am. Chem. Soc. 132, 12767 (2010)

    Article  CAS  Google Scholar 

  27. S.A. Trammell, J. Yang, M. Sykora, et al., Molecular energy transfer across oxide surfaces. J. Phys. Chem. B 105, 8895 (2001)

    Article  CAS  Google Scholar 

  28. M. Tsushima, N. Ikeda, A. Yoshimura, K. Nozaki, T. Ohno, Solid-state photochemistry: energy-transfer and electron-transfer of 3CT in crystals of [OsxRu1− x(bpy)3]X2 (x= 0–0.23). Coord. Chem. Rev. 208, 299 (2000)

    Article  CAS  Google Scholar 

  29. M.D. Ward, F. Barigelletti, Control of photoinduced energy transfer between metal-polypyridyl luminophores across rigid covalent, flexible covalent, or hydrogen-bonded bridges. Coord. Chem. Rev. 216, 127 (2001)

    Article  Google Scholar 

  30. B. Abrahams, B. Hoskins, D. Michail, R. Robson, Assembly of porphyrin building blocks into network structures with large channels. Nature 369, 727 (1994)

    Article  CAS  Google Scholar 

  31. O.K. Farha, A.M. Shultz, A.A. Sarjeant, S.T. Nguyen, J.T. Hupp, Active-site-accessible, porphyrinic metal-organic framework materials. J. Am. Chem. Soc. 133, 5652 (2011)

    Article  CAS  Google Scholar 

  32. A.M. Shultz, A.A. Sarjeant, O.K. Farha, J.T. Hupp, S.T. Nguyen, Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252 (2011)

    Article  CAS  Google Scholar 

  33. S. Becker, A. Böhm, K. Müllen, New thermotropic dyes based on amino-substituted perylendicarboximides. Chem. Eur. J. 6, 3984 (2000)

    Article  CAS  Google Scholar 

  34. H.J. Son, S. Jin, et al., Light-harvesting and ultrafast energy migration in porphyrin-based metal-organic frameworks. J. Am. Chem. Soc. 135, 862 (2013)

    Article  CAS  Google Scholar 

  35. B.A. Gregg, R.A. Cormier, Doping molecular semiconductors: n-type doping of a liquid crystal perylene diimide. J. Am. Chem. Soc. 123, 7959 (2001)

    Article  CAS  Google Scholar 

  36. A. Breeze, A. Salomon, D. Ginley, Polymer – perylene diimide heterojunction solar cells. Appl. Phys. Lett. 81, 3085 (2002)

    Article  CAS  Google Scholar 

  37. H. Langhals, O. Krotz, K. Polborn, P. Mayer, A novel fluorescent dye with strong, anisotropic solid-state fluorescence, small stokes shift, and high photostability. Angew. Chem. Int. Ed. 44, 2427 (2005)

    Article  CAS  Google Scholar 

  38. H.J. Park, M.C. So, et al., Layer-by-layer assembled films of perylene diimide-and squaraine-containing metal–organic framework-like materials: solar energy capture and directional energy transfer. ACS Appl. Mater. Interfaces 8(38), 24983–24988 (2016)

    Article  CAS  Google Scholar 

  39. V. Stavila, J. Volponi, A.M. Katzenmeyer, M.C. Dixon, M.D. Allendorf, Kinetics and mechanism of metal-organic framework thin film growth: systematic investigation of HKUST-1 deposition on QCM electrodes. Chem. Sci. 3(5), 1531–1540 (2012)

    Article  CAS  Google Scholar 

  40. M.C. So, S. Jin, H.J. Son, G.P. Wiederrecht, O.K. Farha, J.T. Hupp, Layer-by-layer fabrication of oriented porous thin films based on porphyrin-containing metal-organic frameworks. J. Am. Chem. Soc. 135(42), 15698–15701 (2013)

    Article  CAS  Google Scholar 

  41. H. Lu, S. Zu, Interfacial synthesis of free-standing metal-organic framework membranes. Eur. J. Inorg. Chem., 8, 1294–1300 (2013)

    Google Scholar 

  42. S.D. Sathaye, K.R. Patil, D.V. Paranjape, et al., Preparation of Q-cadmium sulfide ultrathin films by a new liquid-liquid interface reaction technique (LLIRT). Langmuir 16, 3487–3490 (2000)

    Google Scholar 

  43. C.N.R. Rao, G.U. Kulkarni, V.V. Agrawal, U.K. Gautam, M. Ghosh, U. Tumkurkar, Use of the liquid-liquid interface for generating ultrathin nanocrystalline films of metals, chalcogenides, and oxides. J. Colloid Interface Sci. 289(2), 305–318 (2005)

    Google Scholar 

  44. C.N.R. Rao, K.P. Kalyanikutty, The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc. Chem. Res. 41(4), 489–499 (2008)

    Article  CAS  Google Scholar 

  45. V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Nature and properties of ultrathin nanocrystalline gold films formed at the organic-aqueous interface. J. Phys. Chem. 109(15), 7300–7305 (2005)

    Article  CAS  Google Scholar 

  46. G.L.e.a. Stansfield, Growth of nanocrystals and thin films at the water-oil interface. Phil. Trans. R. Soc. A 368, 4313–4330 (2010)

    Article  CAS  Google Scholar 

  47. D. Sheberla, L. Sun, M. Blood-Forsythe, e. al, High electrical conductivity in Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2 a semiconducting metal organic graphene analog. J. Am. Chem. Soc. 136, 8859–8862 (2014)

    Article  CAS  Google Scholar 

  48. D. Fan, P.J. Thomas, P. O’Brien, Deposition of CdS and ZnS thin films at the water/toluene interface. J. Mater. Chem. 17, 1381–1386 (2007)

    Article  CAS  Google Scholar 

  49. G. Wu, J. Huang, Y. Zang, et al., Porous field-effect transistor based on a semiconducting metal-organic framework. J. Am. Chem. Soc. 139, 1360–1363 (2017)

    Article  CAS  Google Scholar 

  50. J. Berry, T. Buonassisi, D.A. Egger, et al., Hybrid organic-inorganic perovskites (HOIPs): opportunities and challenges. Adv. Mater. 27(35), 5102–5112 (2015)

    Article  CAS  Google Scholar 

  51. H.S. Kim, N.G. Park, Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. J. Phys. Chem. Lett. 5(17), 2927–2934 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the release time for M.C.S from Office of Research and Sponsored Programs at California State University, Chico (CSUC), and CSU Council on Ocean Affairs, Science & Technology. We also thank the faculty members from the Faculty Learning Communities of Office of Faculty Development at CSUC for their helpful comments and suggestions on this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica C. So .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

So, M.C., Yoon, S.W., Mackie, N.D. (2019). Strategies for Improving Solar Energy Conversion: Nanostructured Materials and Processing Techniques. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_5

Download citation

Publish with us

Policies and ethics