Skip to main content

Solar Energy Harvesting by Perfect Absorbers Made of Natural Hyperbolic Material

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

A perfect absorber, with pyramidal nanostructures made of a natural hyperbolic material, for solar energy harvesting is proposed in this chapter. A numerical investigation is first carried out for regularly arranged bismuth telluride (Bi2Te3, an anisotropic and natural hyperbolic material) pyramidal nanostructures placed on top of a Ag substrate, and the metamaterial is submerged in water. The calculated results show that the absorptance of the absorber exceeds 99.9% in the wavelength range of 300–2400 nm. The underlying mechanisms are revealed by the electric field and power dissipation density distribution in the absorber. It is found that the slow light effect in the type-II hyperbolic region (300–1000 nm) and the gradient index effect in the long wavelength range (1000–2400 nm) contribute to the perfect absorption of the solar energy for the proposed absorber. Effects of geometry parameters of nano-pyramids and the substrate on optical properties of the proposed absorber are illustrated. In addition, a rough surface with sharp nanostructures made of Bi2Te3 is also numerically studied. Based on simulation results of rough Bi2Te3 surface, samples with nanostructures made of Bi2Te3 are experimentally manufactured and optical properties of the samples are measured by using an integrating sphere with a grating monochromator. The absorptance of the samples can be as high as 97.5%, and the lowest absorptance of the sample is still higher than 94% in the wavelength range of 380–1800 nm. Moreover, other samples are also fabricated and studied to validate underlying mechanisms of the perfect absorption of solar energy. The results of the present study open a new revenue for effectively harvesting solar energy by using metamaterials with nanostructures made of natural hyperbolic materials submerged in water.

Author Contribution

The research work was carried out by the first author (ZLW) and supervised by the second author (PC). The paper was drafted by ZLW and edited by PC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269–271 (2001)

    Article  CAS  Google Scholar 

  2. S. Biehs, M. Tschikin, P. Ben-Abdallah, Hyperbolic metamaterials as an analog of a blackbody in the near field. Phys. Rev. Lett. 109, 104301 (2012)

    Article  Google Scholar 

  3. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  4. A. Boulouz, A. Giani, F. Pascal-Delannoy, M. Boulouz, A. Foucaran, A. Boyer, Preparation and characterization of MOCVD bismuth telluride thin films. J. Cryst. Growth 194, 336 (1998)

    Article  CAS  Google Scholar 

  5. Y. Cui, K. Fung, J. Xu, H. Ma, Y. Jin, S. He, N. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012)

    Article  CAS  Google Scholar 

  6. S. Dai, Q. Ma, T. Andersen, A. Mcleod, Z. Fei, M. Liu, M. Wagner, K. Watanabe, T. Taniguchi, M. Thiemens, F. Keilmann, P. Jarillo-Herrero, M. Fogler, D. Basov, Subdiffraction focusing and guiding of polaritonic rays in a natural hyperbolic material. Nat. Commun. 6, 6963 (2015)

    Article  CAS  Google Scholar 

  7. M. Esslinger, R. Vogelgesang, N. Talebi, W. Khunsin, P. Gehring, S. Zuani, B. Gompf, K. Kern, Tetradymites as natural hyperbolic materials for the near-infrared to visible. ACS Photon. 1, 1285–1289 (2014)

    Article  CAS  Google Scholar 

  8. P. Falkowski, J. Raven, Aquatic Photosynthesis (Princeton University Press, Princeton, 2013)

    Google Scholar 

  9. A. Fang, T. Koschny, C. Soukoulis, Optical anisotropic metamaterials: negative refraction and focusing. Phys. Rev. B 79, 245127 (2009)

    Article  Google Scholar 

  10. Z. Fang, Y. Zhen, O. Neumann, A. Polman, F. Javier García de Abajo, P. Nordlander, N. Halas, Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett. 13, 1736–1742 (2013)

    Article  CAS  Google Scholar 

  11. H. Feng, B. Yu, S. Chen, K. Collins, C. He, Z. Ren, G. Chen, Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods. Electrochim. Acta 56(8), 3079–3084 (2011)

    Article  CAS  Google Scholar 

  12. L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015)

    Article  Google Scholar 

  13. E. Glytsis, T. Gaylord, Three-dimensional (vector) rigorous coupled-wave analysis of anisotropic grating diffraction. J. Opt. Soc. Am. A 7(8), 1399–1420 (1990)

    Article  Google Scholar 

  14. C. Granqvist, Solar energy materials. Adv. Mater. 15(21), 1789–1803 (2003)

    Article  CAS  Google Scholar 

  15. S. Harrison, S. Li, Y. Huo, B. Zhou, Y. Chen, J. Harris, Two-step growth of high quality Bi2Te3 thin films on Al2O3 by molecular beam epitaxy. Appl. Phys. Lett. 102, 171906 (2013)

    Article  Google Scholar 

  16. A. Hoffman, L. Alekseyev, S. Howard, K. Franz, D. Wasserman, V. Podolskiy, E. Narimanov, D. Sivco, C. Gmachl, Negative refraction in semiconductor metamaterials. Nat. Mater. 6, 946–950 (2007)

    Article  CAS  Google Scholar 

  17. H. Hu, D. Ji, X. Zeng, K. Liu, Q. Gan, Rainbow trapping in hyperbolic metamaterial waveguide. Sci. Rep. 3, 1249 (2013)

    Article  Google Scholar 

  18. S. Igor, C. Simovski, Giant radiation heat transfer through micron gaps. Phys. Rev. B 84, 195459 (2011)

    Article  Google Scholar 

  19. S. Ishii, A. Kildishev, E. Narimanov, V. Shalaev, V. Drachev, Subwavelength interference pattern from volume plasmon polaritons in a hyperbolic medium laser. Laser Photonics Rev. 7, 265–271 (2013)

    Article  CAS  Google Scholar 

  20. L. Jyun-Min, C. Ying-Chung, L. Chi-Pi, Annealing effect on the thermoelectric properties of Bi2Te3 thin films prepared by a thermal evaporation method. J. Nanomater. 2013, 1 (2013)

    Google Scholar 

  21. H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V. Menon, Topological transitions in metamaterials. Science 336, 205–209 (2012)

    Article  CAS  Google Scholar 

  22. M. Kyoung, M. Lee, Nonlinear absorption and refractive index measurements of silver nanorods by the Z-scan technique. Opt. Commun. 171(1–3), 145–148 (1999)

    Article  CAS  Google Scholar 

  23. J. Li, S. Liu, Y. Liu, F. Zhou, Z. Li, Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold rods. Appl. Phys. Lett. 96(26), 263103 (2010)

    Article  Google Scholar 

  24. X. Liu, L. Wang, Z. Zhang, Wideband tunable omnidirectional infrared absorbers based on doped-silicon nanowire arrays. J. Heat Transf. 135, 061602 (2013)

    Article  Google Scholar 

  25. Y. Ma, A. Johansson, E. Ahlberg, A. Palmqvista, A mechanistic study of electrodeposition of bismuth telluride on stainless steel substrates. Electrochim. Acta 55, 4610–4617 (2010)

    Article  CAS  Google Scholar 

  26. A. Meier, N. Gremaud, A. Steinfeld, Economic evaluation of the industrial solar production of lime. Energy Convers. Manag. 46, 905–926 (2005)

    Article  CAS  Google Scholar 

  27. S. Mohan, J. Lange, H. Graener, G. Seifert, Surface plasmon assisted optical nonlinearities of uniformly oriented metal nano-ellipsoids in the glass. Opt. Express 20, 28655–28663 (2012)

    Article  Google Scholar 

  28. E. Narimanov, A. Kildishev, Metamaterials: naturally hyperbolic. Nat. Photonics 9, 214–216 (2015)

    Article  CAS  Google Scholar 

  29. O. Neumann, A. Urban, J. Day, S. Lal, P. Nordlander, N. Halas, Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2012)

    Article  Google Scholar 

  30. O. Neumann, C. Feronti, A. Neumann, A. Dong, K. Schell, B. Lu, E. Kim, M. Quinn, S. Thompson, N. Grady, P. Nordlander, M. Oden, N. Halas, Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. 110, 11677–11681 (2013)

    Article  CAS  Google Scholar 

  31. G. Ni, G. Li, S. Boriskina, H. Li, W. Yang, T. Zhang, G. Chen, The steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016)

    Article  CAS  Google Scholar 

  32. A. Nikitin, E. Yoxall, M. Schnell, S. Velez, I. Dolado, P. Alonso-Gonzalez, F. Casanova, L. Hueso, R. Hillenbrand, Nanofocusing of hyperbolic phonon polaritons in a tapered boron nitride slab. ACS Photon. 3, 924–929 (2016)

    Article  CAS  Google Scholar 

  33. N. Nwachukwu, W. Okonkwo, Effect of an absorptive coating on solar energy storage in a Trombe wall system. Energ. Buildings 40(3), 371–374 (2008)

    Article  Google Scholar 

  34. R. Olmon, B. Slovick, T. Johnson, D. Shelton, S. Oh, G. Boreman, M. Raschke, Optical dielectric function of gold. Phys. Rev. B 86, 235147 (2012)

    Article  Google Scholar 

  35. E. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, 1998)

    Google Scholar 

  36. V. Perebeinos, J. Tersoff, P. Avouris, Effect of exciton-phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005)

    Article  Google Scholar 

  37. A. Polman, Solar steam nanobubbles. ACS Nano 7, 15–18 (2013)

    Article  CAS  Google Scholar 

  38. C. Simovski, S. Maslovski, I. Nefedov, S. Tretyakov, Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications. Opt. Express 21, 14988–15013 (2013)

    Article  Google Scholar 

  39. T. Soga, Nanostructured Materials for Solar Energy Conversion (Elsevier, Amsterdam, 2006)

    Google Scholar 

  40. P. Tao, G. Ni, C. Song, W. Shang, J. Wu, J. Zhu, G. Chen, T. Deng, Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018)

    Article  Google Scholar 

  41. T. Todorov, K. Reuter, D. Mitzi, High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 22, E156–E159 (2010)

    Article  CAS  Google Scholar 

  42. L. Verslegers, P. Catrysse, Z. Yu, S. Fan, Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array. Phys. Rev. Lett. 103, 033902 (2009)

    Article  Google Scholar 

  43. Z. Wang, Z. Zhang, P. Cheng, Natural anisotropic nanoparticles with a broad absorption spectrum for solar energy harvesting. Int. Commun. Heat Mass Transf. 96, 109–113 (2018a)

    Article  CAS  Google Scholar 

  44. Z. Wang, Z. Zhang, X. Quan, P. Cheng, A perfect absorber design using a natural hyperbolic material for harvesting. Sol. Energy 159, 329–336 (2018b)

    Article  CAS  Google Scholar 

  45. Wang, Z, Yang, P, Qi, G, Zhang, Z, and Cheng, P (2019). Measurements of the Absorptance of an Absorber Made of a Natural Hyperbolic Material for Harvesting Solar Energy

    Google Scholar 

  46. J. Wu, Broadband light absorption by tapered metal-dielectric multilayered grating structures. Opt. Commun. 365, 93–98 (2016)

    Article  CAS  Google Scholar 

  47. Y. Xiong, Z. Liu, X. Zhang, Projecting deep-subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers. Appl. Phys. Lett. 93, 111116 (2008)

    Article  Google Scholar 

  48. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. Stacy, X. Zhang, Optical negative refraction in bulk metamaterials of nanowires. Science 21, 930–930 (2008)

    Article  Google Scholar 

  49. Z. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)

    Google Scholar 

  50. J. Zhao, Z. Zhang, Electromagnetic energy storage and power dissipation in nanostructures. J. Quant. Spectrosc. Radiat. Transf. 151, 49–57 (2015)

    Article  CAS  Google Scholar 

  51. B. Zhao, Z. Zhang, Perfect absorption with trapezoidal gratings made of natural hyperbolic materials. Nanoscale Microscale Thermophys. Eng. 21(3), 123–133 (2017)

    Article  CAS  Google Scholar 

  52. J. Zhou, A. Kaplan, L. Chen, L. Guo, Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photon. 1, 618–624 (2014)

    Article  CAS  Google Scholar 

  53. L. Zhou, Y. Tan, D. Ji, B. Zhu, P. Zhang, J. Xu, Q. Gan, Z. Yu, J. Zhu, Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2(4), e1501227 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China through Grant No. 51420105009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Cheng, P. (2019). Solar Energy Harvesting by Perfect Absorbers Made of Natural Hyperbolic Material. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_4

Download citation

Publish with us

Policies and ethics