Skip to main content

Advanced Coupling of Energy Storage and Photovoltaics

  • Chapter
  • First Online:
Nanostructured Materials for Next-Generation Energy Storage and Conversion

Abstract

As the demand of energy has skyrocketed, there is an urgent need for development of energy self-sufficient power systems. Devices for energy generation such as solar/photovoltaic and energy storage such as supercapacitors and batteries are key technologies suitable for meeting the growing energy demand. This chapter introduces the integration of photovoltaic and electrochemical storage processes into one device to build miniaturized and energy self-sufficient power pack. The notable advances in this integration concept based on silicon, dye-sensitized, and perovskite such as photovoltaic technologies with supercapacitors and batteries such as energy storage technologies are presented and discussed along with the challenges and future directions of the technology.

Author Contributions

A. Gurung wrote the section on batteries, K. Chen on supercapacitors and Q. Qiao reviewed and edited the submitted draft as well as research from his own research group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5, 7854–7863 (2012)

    Article  CAS  Google Scholar 

  2. J. Xu, Y. Chen, L. Dai, Efficiently photo-charging lithium-ion battery by perovskite solar cell. Nat. Commun. 6, 8103 (2015)

    Article  CAS  Google Scholar 

  3. IRENA. Renewable Power Generation Costs in 2017. (International Renewable Energy Agency, Abu Dhabi, 2018)

    Google Scholar 

  4. N.S. Lewis, Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016)

    Article  Google Scholar 

  5. B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334, 928–935 (2011)

    Article  CAS  Google Scholar 

  6. A. Gurung, Q. Qiao, Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018)

    Article  CAS  Google Scholar 

  7. Z.N. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)

    Article  CAS  Google Scholar 

  8. F.X. Wang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46, 6816–6854 (2017)

    Article  CAS  Google Scholar 

  9. A.S. Westover et al., Direct integration of a supercapacitor into the backside of a silicon photovoltaic device. Appl. Phys. Lett. 104, 213905 (2014)

    Google Scholar 

  10. Z. Ouyang et al., Monolithic integration of anodic molybdenum oxide pseudocapacitive electrodes on screen-printed silicon solar cells for hybrid energy harvesting-storage systems. Adv. Energy Mater. 7, 1602325 (2017)

    Google Scholar 

  11. L.V. Thekkekara et al., On-chip energy storage integrated with solar cells using a laser scribed graphene oxide film. Appl. Phys. Lett. 107, 031105 (2015)

    Google Scholar 

  12. T. Miyasaka, T.N. Murakami, The photocapacitor: an efficient self-charging capacitor for direct storage of solar energy. Appl. Phys. Lett. 85, 3932–3934 (2004)

    Article  CAS  Google Scholar 

  13. T.N. Murakami, N. Kawashima, T. Miyasaka, A high-voltage dye-sensitized photocapacitor of a three-electrode system. Chem. Commun. 5, 3346–3348 (2005)

    Article  Google Scholar 

  14. H.W. Chen et al., Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods. J. Power Sources 195, 6225–6231 (2010)

    Article  CAS  Google Scholar 

  15. C.Y. Hsu, H.W. Chen, K.M. Lee, C.W. Hu, K.C. Ho, A dye-sensitized photo-supercapacitor based on PProDOT-Et-2 thick films. J. Power Sources 195, 6232–6238 (2010)

    Article  CAS  Google Scholar 

  16. N.F. Yan, G.R. Li, G.L. Pan, X.P. Gao, TiN nanotube arrays as electrocatalytic electrode for solar storable rechargeable battery. J. Electrochem. Soc. 159, A1770–A1774 (2012)

    Article  CAS  Google Scholar 

  17. M. Skunik-Nuckowska et al., Integration of solid-state dye-sensitized solar cell with metal oxide charge storage material into the photoelectrochemical capacitor. J. Power Sources 234, 91–99 (2013)

    Article  CAS  Google Scholar 

  18. J. Xu et al., Integrated photo-supercapacitor based on bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 24, 1840–1846 (2014)

    Article  CAS  Google Scholar 

  19. A.P. Cohn et al., All silicon electrode photocapacitor for integrated energy storage and conversion. Nano Lett. 15, 2727–2731 (2015)

    Article  CAS  Google Scholar 

  20. Y. Fu et al., Integrated power fiber for energy conversion and storage. Energy Environ. Sci. 6, 805–812 (2013)

    Article  CAS  Google Scholar 

  21. X. Chen et al., A novel “energy fiber” by coaxially integrating dye-sensitized solar cell and an electrochemical capacitor. J. Mater. Chem. A 2, 1897–1902 (2014)

    Article  CAS  Google Scholar 

  22. T. Chen et al., An integrated “energy wire” for both photoelectric conversion and energy storage. Angew. Chem. Int. Ed. 51, 11977–11980 (2012)

    Article  CAS  Google Scholar 

  23. J. Bae et al., Single-Fiber-based hybridization of energy converters and storage units using graphene as electrodes. Adv. Mater. 23, 3446–3449 (2011)

    Article  CAS  Google Scholar 

  24. G. Wee, T. Salim, Y.M. Lam, S.G. Mhaisalkar, M. Srinivasan, Printable photo-supercapacitor using single-walled carbon nanotubes. Energy Environ. Sci. 4, 413–416 (2011)

    Article  CAS  Google Scholar 

  25. C.T. Chien et al., Graphene-based integrated photovoltaic energy harvesting/storage device. Small 11, 2929–2937 (2015)

    Article  CAS  Google Scholar 

  26. (a) Y.Z. Jin et al., Laminated free standing PEDOT: PSS electrode for solution-processed integrated photocapacitors via hydrogen-bond interaction. Adv. Mater. Interfaces 4, 1700704 (2017). (b) Liu et al., Beyond metal oxides: introducing low-temperature solution-processed ultrathin layered double hydroxide nanosheets into polymer solar cells toward improved electron transport. Solar RRL 3, 1970025 (2019); (c) Sai-Anand et al., Additive assisted morphological optimization of photoactive layer in polymer solar cells. Sol. Energy Mater. Sol. Cells 182, 246–254 (2018); (d) Xu et al., Improving photovoltaic properties of P3HT:IC60BA through the incorporation of small molecule. Polymers MDPI 10, 121 (2018); (e) Elshobaki et al., Tailoring nanoscale morphology of polymer:fullerene blends using electrostatic field. ACS Appl. Mater. Interfaces 9, 2678–2685 (2017); (f) Zhen et al., Ethanolamine-functionalized fullerene as an efficient electron transport layer for high-efficiency inverted polymer solar cells. J. Mater. Chem. A 4, 8072–8079 (2016); (g) Sai-Anand et al., Electrostatic nanoassembly of contact interfacial layer for enhanced photovoltaic performance in polymer solar cells. Sol. Energy Mater. Sol. Cells 153, 148–163 (2016); (h) Kumar et al., Origin of photogenerated carrier recombination at metal – active layer interface in polymer solar cells. Phys. Chem. Chem. Phys. 17, 27690–27697 (2015); (i) Mohammad et al., Improved performance for inverted organic photovoltaics via spacer between benzodithiophene and benzothiazole in polymers. J. Phys. Chem. C 11, 18992–19000 (2015); (j) Ngo et al., Enhanced lifetime of polymer solar cells by surface passivation of metal oxide buffer layers. ACS Appl. Mater. Interfaces 7, 16093–16100 (2015); (k) Venkatesan et al., Critical role of domain crystallinity, domain purity and domain interface sharpness for reduced bimolecular recombination in polymer solar cells. Nano Energy 12, 457–467 (2015)

    Google Scholar 

  27. Z.T. Zhang et al., Integrated polymer solar cell and electrochemical supercapacitor in a flexible and stable Fiber format. Adv. Mater. 26, 466–470 (2014)

    Article  CAS  Google Scholar 

  28. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Article  CAS  Google Scholar 

  29. (a) H.J. Snaith, Present status and future prospects of perovskite photovoltaics. Nat. Mater. 17, 372 (2018); (b) H. Elbohy et al., Tuning hole transport layer using urea for high-performance perovskite solar cells. Adv. Funct. Mater. 1806740 (2019); (c) K.M. Reza et al., Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology. J. Energy Chem. (2019), in press; (d) S. Mabrouk et al., Higher efficiency perovskite solar cells using additives of LiI, LiTFSI and BMImI in the PbI2 precursor. Sustain. Energy Fuels 1, 2162–2171 (2017); (e) G. Wang et al., Improving photovoltaic performance of carbon-based CsPbBr3 perovskite solar cells by interfacial engineering using P3HT interlayer. J. Power Sources 432, 48–54 (2019); (f) Vickers et al., Improving charge carrier delocalization in perovskite quantum dots by surface passivation with conductive aromatic ligands. ACS Energy Lett. 3, 2931–2939 (2018); (g) Wu et al., Inverted current–voltage hysteresis in perovskite solar cells, ACS Energy Lett. 3, 2457–2460 (2018); (h) Wu et al., Bias-dependent normal and inverted J–V hysteresis in perovskite solar cells. ACS Appl. Mater. Interfaces 10, 25604–25613 (2018); (i) Wu et al., Influence of nonfused cores on the photovoltaic performance of linear triphenylamine-based hole-transporting materials for perovskite solar cells. ACS Appl. Mater. Interfaces 10, 17883–17895 (2018); (j) Gangadharan et al., Aromatic alkylammonium spacer cations for efficient two-dimensional perovskite solar cells with enhanced moisture and thermal stability. Solar RRL 2, 1700215 (2018); (k) K.M. Reza, S. Mabrouk, Q. Qiao, A review on tailoring PEDOT: PSS layer for improved performance of perovskite solar cells. Proc. Nat. Res. Soc. 2(1), 02004 (2018)

    Google Scholar 

  30. NREL, Best Research-Cell Efficiencies (2018), https://www.nrel.gov/pv/assets/images/efficiency-chart.png

  31. X.B. Xu et al., A power pack based on organometallic perovskite solar cell and supercapacitor. ACS Nano 9, 1782–1787 (2015)

    Article  CAS  Google Scholar 

  32. J. Xu, Z.L. Ku, Y.Q. Zhang, D.L. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell. Adv. Mater. Technol. 1, 1600074 (2016)

    Google Scholar 

  33. J. Liang et al., Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. J. Mater. Chem. A 6, 2047–2052 (2018)

    Article  CAS  Google Scholar 

  34. M. Asghar, J. Zhang, H. Wang, P. Lund, Device stability of perovskite solar cells–a review. Renew. Sust. Energ. Rev. 77, 131–146 (2017)

    Article  CAS  Google Scholar 

  35. J. Liang et al., An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy 52, 239–245 (2018)

    Article  CAS  Google Scholar 

  36. H. Sun et al., Energy harvesting and storage devices fused into various patterns. J. Mater. Chem. A 3, 14977–14984 (2015)

    Article  CAS  Google Scholar 

  37. P. Alotto, M. Guarnieri, F. Moro, Redox flow batteries for the storage of renewable energy: a review. Renew. Sust. Energ. Rev. 29, 325–335 (2014)

    Article  CAS  Google Scholar 

  38. H.-D. Um et al., Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy Environ. Sci. (2017)

    Google Scholar 

  39. S. Liao et al., Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474 (2016)

    Article  CAS  Google Scholar 

  40. W. Li et al., Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices. Angew. Chem. Int. Ed. 55, 13104–13108 (2016)

    Article  CAS  Google Scholar 

  41. W. Guo, X. Xue, S. Wang, C. Lin, Z.L. Wang, An integrated power pack of dye-sensitized solar cell and Li battery based on double-sided TiO2 nanotube arrays. Nano Lett. 12, 2520–2523 (2012)

    Article  CAS  Google Scholar 

  42. A. Paolella et al., Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium-ion batteries. Nat. Commun. 8, 14643 (2017)

    Google Scholar 

  43. P. Liu et al., A solar rechargeable flow battery based on photoregeneration of two soluble redox couples. ChemSusChem 6, 802–806 (2013)

    Article  CAS  Google Scholar 

  44. (a) N.F. Yan, G.R. Li, X.P. Gao, Solar rechargeable redox flow battery based on Li2WO4/LiI couples in dual-phase electrolytes. J. Mater. Chem. A 1, 7012–7015 (2013); (b) Ma et al., Fe1-xCoxS2 solid solutions with tunable energy structures to enhance the performance of triiodide reduction in dye-sensitized solar cells. ChemNanoMat 4, 1043 (2018); (c) Elbohy et al., Creation of oxygen vacancy to activate WO3 for higher efficiency dye-sensitized solar cells. Sustain. Energy Fuels 2, 403–412 (2018); (d) Abdulkarim et al., Urea treated electrolytes for higher efficiency dye-sensitized solar cells. J. Phys. Chem. C 121(39), 21225–21230 (2017); (e) Huang et al., Synergistically enhanced electrochemical performance of Ni3S4-PtX (X=Fe, Ni) heteronanorods as heterogeneous catalysts in dye sensitized solar cells. ACS Appl. Mater. Interfaces 9, 27607–27617 (2017); (f) He et al., The role of Mott–Schottky heterojunctions in Ag–Ag8SnS6 as counter electrodes in dye-sensitized solar cells. ChemSusChem 8, 817–820 (2015); (g) Awuah et al., New pyran dyes for dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 224, 116–122 (2011); (h) Sigdel et al., Dye-sensitized solar cells based on spray-coated carbon nanofiber/TiO2 nanoparticle composite counter electrodes. J. Mater. Chem. A 2, 11448–11453 (2014); (i) Elbohy et al., Graphene-embedded carbon nanofibers decorated with Pt nanoneedles for higher efficiency dye-sensitized solar cells. J. Mater. Chem. A 3, 17721–17727 (2015); (j) Zhou et al., Graphene-beaded carbon nanofibers with incorporated Ni nanoparticles as efficient counter electrode for dye-sensitized solar cells. Nano Energy 22, 558–563 (2016); (k) Ma et al., Electrospun carbon nano-felt derived from alkali lignin for cost-effective counter electrodes of dye-sensitized solar cells. RSC Adv. 6, 11481–11487 (2016)

    Google Scholar 

  45. M. Yu, X. Ren, L. Ma, Y. Wu, Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging. Nat. Commun. 5, 5111 (2014)

    Google Scholar 

  46. Q. Li, N. Li, M. Ishida, H. Zhou, Saving electric energy by integrating a photoelectrode into a Li-ion battery. J. Mater. Chem. A 3, 20903–20907 (2015)

    Article  CAS  Google Scholar 

  47. M. Yu et al., Aqueous lithium–iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335 (2015)

    Article  CAS  Google Scholar 

  48. A. Gurung et al., Highly efficient perovskite solar cell photocharging of lithium ion battery using DC-DC booster. Adv. Energy Mater. 7, 1602105 (2017)

    Article  Google Scholar 

  49. S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18, 1856–1862 (2018)

    Article  CAS  Google Scholar 

  50. N. Li, Y. Wang, D. Tang, H. Zhou, Integrating a photocatalyst into a hybrid lithium–sulfur battery for direct storage of solar energy. Angew. Chem. Int. Ed. 54, 9271–9274 (2015)

    Article  CAS  Google Scholar 

  51. W. Li, H.-C. Fu, Y. Zhao, J.-H. He, S. Jin, 14.1% efficient monolithically integrated solar flow battery. Chem 4, 2644–2657 (2018)

    Google Scholar 

  52. N. Vicente, G. Garcia-Belmonte, Methylammonium lead bromide perovskite battery anodes reversibly host high Li-ion concentrations. J. Phys. Chem. Lett. 8, 1371–1374 (2017)

    Article  CAS  Google Scholar 

  53. (a) S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16 (2017); (b) A. Gurung et al., Tin selenide – multi-walled carbon nanotubes hybrid anodes for high performance lithium-ion batteries. Electrochim. Acta 211, 720–725 (2016); (c) Z. Zhou et al., Binder free hierarchical mesoporous carbon foam for high performance lithium ion battery. Sci. Rep. 7, 1440 (2017); (d) S. J. P. Varapragasam et al., Kirkendall growth of hollow Mn3O4 nanoparticles upon galvanic reaction of MnO with Cu2+ and evaluation as anode for lithium-ion batteries. J. Phys. Chem. C 121, 11089–11099 (2017); (e) R. Naderi et al., Activation of passive nanofillers in composite polymer electrolyte for higher performance lithium-ion batteries. Adv. Sustain. Syst. 1, 1700043 (2017); (f) A. Gurung et al., A review on strategies addressing interface incompatibilities in inorganic all-solid-state lithium batteries. Sustain. Energy Fuels (2019), in press; (g) R. Pathak et al., Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction. Nanoscale 10, 15956–15966 (2018)

    Google Scholar 

  54. A.C. Kozen et al., Stabilization of lithium metal anodes by hybrid artificial solid electrolyte interphase. Chem. Mater. 29, 6298–6307 (2017)

    Article  CAS  Google Scholar 

  55. (a) N.W. Li, Y.X. Yin, C.P. Yang, Y.G. Guo, An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 28, 1853–1858 (2016); (b) K. Chen et al., Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater. 18, 389–396 (2019); (c) R. Pathak et al., Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv. Energy. Mater. 9, 1901486 (2019)

    Google Scholar 

  56. G. Zheng et al., Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618 (2014)

    Article  CAS  Google Scholar 

  57. C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 6, 8058 (2015)

    Article  CAS  Google Scholar 

  58. H. Zhang et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angew. Chem. Int. Ed. 57, 15002–15027 (2018)

    Google Scholar 

  59. Q. Pang, X. Liang, A. Shyamsunder, L.F. Nazar, An in vivo formed solid electrolyte surface layer enables stable plating of Li metal. Joule 1, 871–886 (2017)

    Article  CAS  Google Scholar 

  60. D. Lin et al., Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 11, 626 (2016)

    Article  CAS  Google Scholar 

  61. R. Zhang et al., Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule 2, 764–777 (2018)

    Article  CAS  Google Scholar 

  62. X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon-sulfur cathode for lithium-sulfur batteries. Nat. Mater. 8, 500 (2009)

    Article  CAS  Google Scholar 

  63. H. Wang et al., Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 11, 2644–2647 (2011)

    Article  CAS  Google Scholar 

  64. W. Li et al., Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013)

    Article  CAS  Google Scholar 

  65. W. Li et al., High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. 110, 7148–7153 (2013)

    Article  CAS  Google Scholar 

  66. Z.W. Seh et al., Facile synthesis of Li2S–polypyrrole composite structures for high-performance Li2S cathodes. Energy Environ. Sci. 7, 672–676 (2014)

    Article  CAS  Google Scholar 

  67. Z.W. Seh et al., High-capacity Li2S–graphene oxide composite cathodes with stable cycling performance. Chem. Sci. 5, 1396–1400 (2014)

    Article  CAS  Google Scholar 

  68. K.-N. Jung et al., Rechargeable lithium-air batteries: a perspective on the development of oxygen electrodes. J. Mater. Chem. A 4, 14050–14068 (2016)

    Article  CAS  Google Scholar 

  69. D. Aurbach, B.D. McCloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1, 16128 (2016)

    Article  CAS  Google Scholar 

  70. S.K. Das, S. Mahapatra, H. Lahan, Aluminium-ion batteries: developments and challenges. J. Mater. Chem. A 5, 6347–6367 (2017)

    Article  CAS  Google Scholar 

  71. F. Ambroz, T.J. Macdonald, T. Nann, Trends in aluminium-based intercalation batteries. Adv. Energy Mater. 7, 1602093 (2017)

    Google Scholar 

  72. Z.A. Zafar et al., Cathode materials for rechargeable aluminum batteries: current status and progress. J. Mater. Chem. A 5, 5646–5660 (2017)

    Article  CAS  Google Scholar 

  73. G.A. Elia et al., An overview and future perspectives of aluminum batteries. Adv. Mater. 28, 7564–7579 (2016)

    Article  CAS  Google Scholar 

  74. D.Y. Wang et al., Advanced rechargeable aluminum ion battery with a high-quality natural graphite cathode. Nat. Commun. 8, 14283 (2017)

    Google Scholar 

  75. M.C. Lin et al., An ultrafast rechargeable aluminum-ion battery. Nature 520, 325–328 (2015)

    Article  Google Scholar 

  76. C.R. DeBlase et al., Rapid and efficient redox processes within 2D covalent organic framework thin films. ACS Nano 9, 3178–3183 (2015)

    Article  CAS  Google Scholar 

  77. L. Liu, Y. Yan, Z.H. Cai, S.X. Lin, X.B. Hu, Growth-oriented Fe-based MOFs synergized with graphene aerogels for high-performance supercapacitors. Adv. Mater. Interfaces 5, 1701548 (2018)

    Google Scholar 

  78. X. Xiao et al., Freestanding mesoporous VN/CNT hybrid electrodes for flexible all-solid-state supercapacitors. Adv. Mater. 25, 5091–5097 (2013)

    Article  CAS  Google Scholar 

  79. M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–U171 (2014)

    Article  CAS  Google Scholar 

  80. C.X. Hao et al., Flexible all-solid-state supercapacitors based on liquid-exfoliated black-phosphorus nanoflakes. Adv. Mater. 28, 3194–3201 (2016)

    Article  CAS  Google Scholar 

  81. C. Liu, C. Zhang, H. Fu, X. Nan, G. Cao, Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv. Energy Mater. 7, 1601127 (2017)

    Article  Google Scholar 

  82. P. Wang et al., Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability. J. Mater. Chem. A 4, 9760–9766 (2016)

    Article  CAS  Google Scholar 

  83. K.A. Bush et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017)

    Article  CAS  Google Scholar 

  84. K.A. Bush et al., Minimizing current, and voltage losses to reach 25%-efficient monolithic two-terminal perovskite-silicon tandem solar cells. ACS Energy Lett. 3, 2173–2180 (2018)

    Google Scholar 

  85. J.H. Heo, S.H. Im, CH3NH3PbBr3–CH3NH3PbI3 perovskite–perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv. Mater. 28, 5121–5125 (2016)

    Article  CAS  Google Scholar 

  86. D. Forgács et al., Efficient monolithic perovskite/perovskite tandem solar cells. Adv. Energy Mater. 7, 1602121 (2017)

    Article  Google Scholar 

  87. G.E. Eperon et al., Perovskite-perovskite tandem photovoltaics with optimized bandgaps. Science 354, 861–865 (2016). https://doi.org/10.1126/science.aaf9717

  88. A. Rajagopal et al., Highly efficient perovskite–perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29, 1702140 (2017)

    Google Scholar 

  89. D.P. McMeekin et al., A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016)

    Article  CAS  Google Scholar 

  90. K.A. Bush et al., Compositional engineering for efficient wide band gap perovskites with improved stability to photoinduced phase segregation. ACS Energy Lett. (2018)

    Google Scholar 

  91. M. Hu, C. Bi, Y. Yuan, Y. Bai, J. Huang, Stabilized wide bandgap MAPbBrxI3–x perovskite by enhanced grain size and improved crystallinity. Adv. Sci. 3, 1500301 (2016)

    Google Scholar 

  92. Z. Yang et al., Stabilized wide bandgap perovskite solar cells by tin substitution. Nano Lett. 16, 7739–7747 (2016)

    Article  CAS  Google Scholar 

  93. M.H. Kumar et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 26, 7122–7127 (2014)

    Article  CAS  Google Scholar 

  94. K. Marshall, M. Walker, R. Walton, R. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics. Nat. Energy 1, 16178 (2016)

    Article  CAS  Google Scholar 

  95. W. Liao et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%. Adv. Mater. 28, 9333–9340 (2016)

    Article  CAS  Google Scholar 

  96. Z. Zhao et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%. Adv. Sci. 4, 1700204 (2017)

    Google Scholar 

  97. S. Shao et al., Highly reproducible Sn-based hybrid perovskite solar cells with 9% efficiency. Adv. Energy Mater. 8, 1702019 (2018)

    Article  Google Scholar 

  98. Y. Li et al., 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%. Adv. Energy Mater. 6, 1601353 (2016)

    Google Scholar 

  99. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of an absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)

    Article  CAS  Google Scholar 

  100. D. Zhao et al., Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy 2, 17018 (2017)

    Article  CAS  Google Scholar 

  101. G. Xu et al., Integrating ultrathin bulk-heterojunction organic semiconductor intermediary for high-performance low-bandgap perovskite solar cells with low energy loss. Adv. Funct. Mater. 28, 1804427 (2018)

    Article  Google Scholar 

  102. X. Liu et al., 17.46% efficient and highly stable carbon-based planar perovskite solar cells employing Ni-doped rutile TiO2 as the electron transport layer. Nano Energy 50, 201–211 (2018)

    Article  CAS  Google Scholar 

  103. H. Zhang et al., Self-adhesive macroporous carbon electrodes for efficient and stable perovskite solar cells. Adv. Funct. Mater. 28, 1802985 (2018)

    Article  Google Scholar 

  104. G. Niu, X. Guo, L. Wang, Review of recent progress in chemical stability of perovskite solar cells. J. Mater. Chem. A 3, 8970–8980 (2015)

    Article  CAS  Google Scholar 

  105. J. Chen et al., Recent progress in stabilizing hybrid perovskites for solar cell applications. J. Power Sources 355, 98–133 (2017)

    Article  CAS  Google Scholar 

  106. J.C. Bachman et al., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2015)

    Article  Google Scholar 

  107. L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018)

    Article  Google Scholar 

  108. N. Kamaya et al., A lithium superionic conductor. Nat. Mater. 10, 682 (2011)

    Article  CAS  Google Scholar 

  109. S. Ohta, T. Kobayashi, J. Seki, T. Asaoka, Electrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J. Power Sources 202, 332–335 (2012)

    Article  CAS  Google Scholar 

  110. A. Sakuda et al., All-solid-state lithium secondary batteries with metal-sulfide-coated LiCoO2 prepared by thermal decomposition of dithiocarbamate complexes. J. Mater. Chem. 22, 15247–15254 (2012)

    Article  CAS  Google Scholar 

  111. K. Takada et al., Interfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ionics 225, 594–597 (2012)

    Article  CAS  Google Scholar 

  112. S. Ohta et al., All-solid-state lithium-ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53–56 (2013)

    Article  CAS  Google Scholar 

  113. K. Park et al., Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: an interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016)

    Article  CAS  Google Scholar 

  114. F. Han et al., Interphase engineering enabled all-ceramic lithium battery. Joule 2, 497–508 (2018)

    Article  CAS  Google Scholar 

  115. Y. Jin, P.J. McGinn, Bulk solid-state rechargeable lithium-ion battery fabrication with Al-doped Li7La3Zr2O12 electrolyte and Cu0.1V2O5 cathode. Electrochim. Acta 89, 407–412 (2013)

    Article  CAS  Google Scholar 

  116. X. Han et al., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2017)

    Article  CAS  Google Scholar 

  117. K.K. Fu et al., Toward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017)

    Article  Google Scholar 

  118. A. Priyadarshi et al., A large area (70 cm2) monolithic perovskite solar module with high efficiency and stability. Energy Environ. Sci. 9, 3687–3692 (2016)

    Article  CAS  Google Scholar 

  119. J.H. Heo, M.H. Lee, M.H. Jang, S.H. Im, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016)

    Article  CAS  Google Scholar 

  120. M. Yang et al., Perovskite ink with a wide processing window for scalable high-efficiency solar cells. Nat. Energy 2, 17038 (2017)

    Article  CAS  Google Scholar 

  121. T. Qin et al., Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 31, 210–217 (2017)

    Article  CAS  Google Scholar 

  122. S.-G. Li et al., Inkjet printing of CH3NH3PbI3 on a mesoscopic TiO2 film for highly efficient perovskite solar cells. J. Mater. Chem. A 3, 9092–9097 (2015)

    Google Scholar 

Download references

Acknowledgments

The project was benefitted from US-Egypt and Science Technology Joint Fund from USAID through NAS (2000007144). This article is derived from the Subject Data funded in whole or part by NAS and USAID, and any opinions, findings, conclusions, or recommendations expressed in this article are those of the authors alone and do not necessarily reflect the views of USAID or NAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiquan Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurung, A., Chen, K., Qiao, Q. (2019). Advanced Coupling of Energy Storage and Photovoltaics. In: Atesin, T.A., Bashir, S., Liu, J.L. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59594-7_11

Download citation

Publish with us

Policies and ethics