An Ehrenfeucht-Fraïssé Game for Inquisitive First-Order Logic
Conference paper
First Online:
- 199 Downloads
Abstract
Inquisitive first-order logic, InqBQ, is an extension of classical first-order logic with questions. From a mathematical point of view, formulas in this logic express properties of sets of relational structures. In this paper we describe an Ehrenfeucht-Fraïssé game for InqBQ and show that it characterizes the distinguishing power of the logic. We exploit this result to show a number of undefinability results: in particular, several variants of the question how many individuals have property P are not expressible in InqBQ, even in restriction to finite models.
References
- 1.Ciardelli, I.: Inquisitive semantics and intermediate logics. M.Sc. thesis, University of Amsterdam (2009)Google Scholar
- 2.Ciardelli, I.: Questions in logic. Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (2016)Google Scholar
- 3.Ciardelli, I.: Questions as information types. Synthese 195, 321–365 (2018)MathSciNetCrossRefGoogle Scholar
- 4.Ciardelli, I., Groenendijk, J., Roelofsen, F.: Inquisitive Semantics. Oxford University Press, Oxford (2018)CrossRefGoogle Scholar
- 5.Ciardelli, I., Roelofsen, F.: Inquisitive logic. J. Philos. Log. 40(1), 55–94 (2011)MathSciNetCrossRefGoogle Scholar
- 6.Ehrenfeucht, A.: An application of games to the completeness problem for formalized theories. Fund. Math. 49(2), 129–141 (1961). http://eudml.org/doc/213582MathSciNetCrossRefGoogle Scholar
- 7.Fagin, R.: Monadic generalized spectra. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 21, 89–96 (1975)MathSciNetCrossRefGoogle Scholar
- 8.Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publications Scientifiques de l’Université D’Alger 1(1), 35–182 (1954)Google Scholar
- 9.Frittella, S., Greco, G., Palmigiano, A., Yang, F.: A multi-type calculus for inquisitive logic. In: Väänänen, J., Hirvonen, Å., de Queiroz, R. (eds.) WoLLIC 2016. LNCS, vol. 9803, pp. 215–233. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52921-8_14CrossRefzbMATHGoogle Scholar
- 10.Grilletti, G.: Disjunction and existence properties in inquisitive first-order logic. Stud. Logica (2018). https://doi.org/10.1007/s11225-018-9835-3. ISSN 1572-8730
- 11.Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two Notions. Cornell University Press (1962)Google Scholar
- 12.Hodges, W.: A Shorter Model Theory. Cambridge University Press, New York (1997)zbMATHGoogle Scholar
- 13.Immerman, N.: Upper and lower bounds for first order expressibility. J. Comput. Syst. Sci. 25(1), 76–98 (1982)MathSciNetCrossRefGoogle Scholar
- 14.Kolaitis, P., Väänänen, J.: Generalized quantifiers and pebble games on finite structures. Ann. Pure Appl. Log. 74(1), 23–75 (1995)MathSciNetCrossRefGoogle Scholar
- 15.Połacik, T.: Back and forth between first-order kripke models. Log. J. IGPL 16(4), 335–355 (2008)MathSciNetCrossRefGoogle Scholar
- 16.Punčochář, V.: Weak negation in inquisitive semantics. J. Log. Lang. Inf. 24(3), 323–355 (2015)MathSciNetCrossRefGoogle Scholar
- 17.Punčochář, V.: A generalization of inquisitive semantics. J. Philos. Log. 45(4), 399–428 (2016)MathSciNetCrossRefGoogle Scholar
- 18.Roelofsen, F.: Algebraic foundations for the semantic treatment of inquisitive content. Synthese 190(1), 79–102 (2013)MathSciNetCrossRefGoogle Scholar
- 19.Väänänen, J.: Models and Games, 1st edn. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
- 20.van Benthem, J.: Modal correspondence theory dissertation, pp. 1–148. Universiteit van Amsterdam, Instituut voor Logica en Grondslagenonderzoek van Exacte Wetenschappen (1976)Google Scholar
- 21.Visser, A.: Submodels of Kripke models. Arch. Math. Log. 40(4), 277–295 (2001)MathSciNetCrossRefGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany, part of Springer Nature 2019