Advertisement

A Study of Subminimal Logics of Negation and Their Modal Companions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11456)

Abstract

We study propositional logical systems arising from the language of Johansson’s minimal logic and obtained by weakening the requirements for the negation operator. We present their semantics as a variant of neighbourhood semantics. We use duality and completeness results to show that there are uncountably many subminimal logics. We also give model-theoretic and algebraic definitions of filtration for minimal logic and show that they are dual to each other. These constructions ensure that the propositional minimal logic has the finite model property. Finally, we define and investigate bi-modal companions with non-normal modal operators for some relevant subminimal systems, and give infinite axiomatizations for these bi-modal companions.

Notes

Acknowledgments

We would like to thank the referees for their careful reading, which has helped us to clarify a number of issues and improve the paper.

References

  1. 1.
    van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Studia Logica 99(1–3), 61–92 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bezhanishvili, G., Bezhanishvili, N.: An algebraic approach to filtrations for superintuitionistic logics. In: Liber Amicorum Albert Visser. Tributes Series, vol. 30, pp. 47–56 (2016)Google Scholar
  3. 3.
    Bezhanishvili, G., Bezhanishvili, N.: Locally finite reducts of Heyting algebras and canonical formulas. Notre Dame J. Form. Log. 58(1), 21–45 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bezhanishvili, G., Moraschini, T., Raftery, J.G.: Epimorphisms in varieties of residuated structures. J. Algebra 492, 185–211 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bezhanishvili, N.: Lattices of intermediate and cylindric modal logics. Ph.D. thesis, ILLC Dissertations Series DS-2006-02, Universiteit van Amsterdam (2006)Google Scholar
  6. 6.
    Bezhanishvili, N., de Jongh, D., Tzimoulis, A., Zhao, Z.: Universal models for the positive fragment of intuitionistic logic. In: Hansen, H.H., Murray, S.E., Sadrzadeh, M., Zeevat, H. (eds.) TbiLLC 2015. LNCS, vol. 10148, pp. 229–250. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54332-0_13CrossRefGoogle Scholar
  7. 7.
    Bílková, M., Colacito, A.: Proof theory for positive logic with weak negation. Studia Logica (2019, to appear)Google Scholar
  8. 8.
    Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  9. 9.
    Caicedo, X., Cignoli, R.: An algebraic approach to intuitionistic connectives. J. Symb. Log. 66(04), 1620–1636 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford Logic Guides, vol. 35. The Clarendon Press, New York (1997)zbMATHGoogle Scholar
  11. 11.
    Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cambridge (1980)CrossRefGoogle Scholar
  12. 12.
    Colacito, A.: Minimal and subminimal logic of negation. Master’s thesis, ILLC Master of Logic Series Series MoL-2016-14, Universiteit van Amsterdam (2016)Google Scholar
  13. 13.
    Colacito, A., de Jongh, D., Vargas, A.L.: Subminimal negation. Soft Comput. 21(1), 165–174 (2017)CrossRefGoogle Scholar
  14. 14.
    Ertola, R.C., Galli, A., Sagastume, M.: Compatible functions in algebras associated to extensions of positive logic. Log. J. IGPL 15(1), 109–119 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Hansen, H.H.: Monotonic modal logics. Master’s thesis, ILLC Prepublication Series PP-2003-23, Universiteit van Amsterdam (2003)Google Scholar
  16. 16.
    Hazen, A.P.: Subminimal negation. University of Melbourne Philosophy Department, Preprint 1/92 (1992)Google Scholar
  17. 17.
    Hazen, A.P.: Is even minimal negation constructive? Analysis 55, 105–107 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Humberstone, L.: The Connectives. MIT Press, Cambridge (2011)CrossRefGoogle Scholar
  19. 19.
    Jankov, V.A.: The construction of a sequence of strongly independent superintuitionistic propositional calculi. Sov. Math. Dokl. 9, 806–807 (1968)Google Scholar
  20. 20.
    Johansson, I.: Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio mathematica 4, 119–136 (1937)MathSciNetzbMATHGoogle Scholar
  21. 21.
    de Jongh, D.: Investigations on the intuitionistic propositional calculus. Ph.D. thesis, ILLC Historical Dissertation Series HDS-5, Universiteit van Amsterdam (1968)Google Scholar
  22. 22.
    Kolmogorov, A.N.: On the principle of excluded middle. Matematicheskii Sbornik 32(24), 646–667 (1925)Google Scholar
  23. 23.
    Lemmon, E.J.: An introduction to modal logic: the lemmon notes. In: Collaboration with Scott, D., Segerberg, K. (eds.) American Philosophical Quarterly. Monograph Series, vol. 11. Basil Blackwell, Oxford (1977)Google Scholar
  24. 24.
    McKinsey, J.C.C.: A solution of the decision problem for the Lewis systems S2 and S4, with an application to topology. J. Symb. Logic 6, 117–134 (1941)MathSciNetCrossRefGoogle Scholar
  25. 25.
    McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 54, 141–191 (1944)CrossRefGoogle Scholar
  26. 26.
    Odintsov, S.: Constructive Negations and Paraconsistency. Trends in Logic, vol. 26. Springer, Dordrecht (2008).  https://doi.org/10.1007/978-1-4020-6867-6CrossRefzbMATHGoogle Scholar
  27. 27.
    Özgün, A.: Evidence in epistemic logic: a topological perspective. Ph.D. thesis, ILLC Dissertations Series DS-2017-07, Universiteit van Amsterdam (2017)Google Scholar
  28. 28.
    Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-67149-9CrossRefzbMATHGoogle Scholar
  29. 29.
    Rasiowa, H.: An Algebraic Approach to Non-classical Logics. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam (1974)zbMATHGoogle Scholar
  30. 30.
    Segerberg, K.: An Essay in Classical Modal Logic, vols. 1–3. Filosofiska Föreningen och Filosofiska Institutionen vid Uppsala Universitet (1971)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Mathematical InstituteUniversity of BernBernSwitzerland

Personalised recommendations