Skip to main content

Information Technology in Critical Care

  • Chapter
  • First Online:
Neurocritical Care Informatics

Abstract

There is a broad consensus that twenty-first century healthcare will require intensive use of information technology in order to acquire and analyze data and then manage and disseminate information. No area is more data intensive than the intensive care unit. While there have been major improvements in intensive care monitoring, including the development of enterprise clinical information systems, the medical industry, for the most part, has not incorporated many of the advances in computer science, biomedical engineering, signal processing, and mathematics that many other industries have readily embraced. Acquiring, synchronizing, integrating, and analyzing patient data remains frustratingly difficult because of incompatibilities among monitoring equipment, proprietary limitations from industry, and the absence of standard data formatting. In this paper, we will review the history of computers in the ICU along with commonly used monitoring and data acquisition systems, both those commercially available and those being developed for research purposes including our own efforts toward developing an integrated critical care informatics architecture.

Portions of this chapter have been previously published in De Georgia MA, Kaffashi F, Jacono FJ, Loparo KA, “Information Technology in Critical Care: Review of Monitoring and Data Acquisition Systems for Patient Care and Research,” The Scientific World Journal, vol. 2015, Article ID 727694, 9 pages, 2015. https://doi.org/10.1155/2015/727694.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tegtmeyer K, Ibsen L, Goldstein B. Computer-assisted learning in critical care: from ENIAC to HAL. Crit Care Med. 2001;29(8 Suppl):N177–82.

    Article  CAS  PubMed  Google Scholar 

  2. McLeroy SL, Klover RV. Implementing problem-oriented medical records (POMR) in an out-patient clinic. J Am Diet Assoc. 1978;72(5):522–4.

    CAS  PubMed  Google Scholar 

  3. Harris JM Jr. COSTAR--a working computer system for ambulatory care. Mil Med. 1978;143(12):880–2.

    Article  PubMed  Google Scholar 

  4. Pryor TA, Gardner RM, Clayton PD, Warner HR. The HELP system. J Med Syst. 1983;7(2):87–102.

    Article  CAS  PubMed  Google Scholar 

  5. Stead WW, Brame RG, Hammond WE, Jelovsek FR, Estes EH, Parker RT. A computerized obstetric medical record. Obstet Gynecol. 1977;49(4):502–9.

    CAS  PubMed  Google Scholar 

  6. McDonald CJ, Murray R, Jeris D, Bhargava B, Seeger J, Blevins L. A computer-based record and clinical monitoring system for ambulatory care. Am J Public Health. 1977;67(3):240–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shubin H, Weil MH. Efficient monitoring with a digital computer of cardiovascular function in seriously ill patients. Ann Intern Med. 1966;65(3):453–60.

    Article  CAS  PubMed  Google Scholar 

  8. McKesson E. The technique of recording the effects of gas-oxygen mixtures, pressures, rebreathing and carbon dioxide, with a summary of the effects. Anesth Analg. 1934;13(1):1–14.

    Google Scholar 

  9. Lipkin M, Engle RL Jr, Davis BJ, Zworykin VK, Ebald R, Sendrow M, Berkley C. Digital computer as aid to differential diagnosis. Use in hematologic diseases. Arch Intern Med. 1961;108:56–72.

    Article  CAS  PubMed  Google Scholar 

  10. Stacy R, Peters R. Computations of respiratory mechanical parameters. Computations in biomedical research. New York, NY: Academic Press; 1965.

    Google Scholar 

  11. Sheppard LC, Kouchoukos NT, Kurtts MA, Kirklin JW. Automated treatment of critically ill patients following operation. Ann Surg. 1968;168(4):596–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seiver A. Critical care computing. Past, present, and future. Crit Care Clin. 2000;16(4):601–21.

    Article  CAS  PubMed  Google Scholar 

  13. Sado AS. Electronic medical record in the intensive care unit. Crit Care Clin. 1999;15(3):499–522.

    Article  CAS  PubMed  Google Scholar 

  14. Gravenstein JS. The automated anesthesia record. Int J Clin Monit Comput. 1986;3(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  15. Sullivan F. U.S. high acuity care information systems market; 2011.

    Google Scholar 

  16. GE Healthcare: Legacy Products. http://www3.gehealthcare.com/en/Products/Categories/Healthcare_IT/Legacy_Products. Accessed 22 Oct 2013.

  17. Philips: History & Timeline. http://www.healthcare.philips.com/main/about/company/historyandtimeline.wpd. Accessed 22 Oct 2013.

  18. HIMSS Analytics. Medical devices landscape: current and future adoption, integration with EMRs, and connectivity; 2010. Accessed June 6, 2013.

    Google Scholar 

  19. Tsui F, Ching-Chung L, Sun M. Acquiring, modeling, and predicting intracranial pressure in the intensive care unit. Biomed Eng. 1998;8:96–108.

    Google Scholar 

  20. Smielewski P, Lavinio A, Timofeev I, Radolovich D, Perkes I, Pickard JD, Czosnyka M. ICM+, a flexible platform for investigations of cerebrospinal dynamics in clinical practice. Acta Neurochir Suppl. 2008;102:145–51.

    Article  CAS  PubMed  Google Scholar 

  21. Gade J, Korhonen I, van Gils M, Weller P, Pesu L. Technical description of the IBIS data library. Improved Monitoring for Brain Dysfunction in Intensive Care and Surgery. Comput Methods Programs Biomed. 2000;63(3):175–86. S0169260700001085 [pii].

    Article  CAS  PubMed  Google Scholar 

  22. Kropyvnytskyy I, Saunders F, Schierek P, Pols M. A computer system for continuous long-term recording, processing, and analysis of physiological data of brain injured patients in ICU settings. Brain Inj. 2001;15(7):577–83. https://doi.org/10.1080/02699050010007407.

    Article  CAS  PubMed  Google Scholar 

  23. Sorani MD, Hemphill JC 3rd, Morabito D, Rosenthal G, Manley GT. New approaches to physiological informatics in neurocritical care. Neurocrit Care. 2007;7(1):45–52. https://doi.org/10.1007/s12028-007-0043-7.

    Article  PubMed  Google Scholar 

  24. Goldstein B, McNames J, McDonald BA, Ellenby M, Lai S, Sun Z, Krieger D, Sclabassi RJ. Physiologic data acquisition system and database for the study of disease dynamics in the intensive care unit. Crit Care Med. 2003;31(2):433–41. https://doi.org/10.1097/01.CCM.0000050285.93097.52.

    Article  PubMed  Google Scholar 

  25. Vinecore K, Aboy M, McNames J, Phillips C, Agbeko R, Peters M, Ellenby M, McManus ML, Goldstein B. Design and implementation of a portable physiologic data acquisition system. Pediatr Crit Care Med. 2007;8(6):563–9. https://doi.org/10.1097/01.PCC.0000288715.66726.64.

    Article  PubMed  Google Scholar 

  26. Moody G, Mark R. A database to support development and evaluation of intelligent intensive care monitoring. Comp Cardiol. 1996;23:657.

    Google Scholar 

  27. Saeed M, Lieu C, Raber G, Mark R. MIMIC II: a massive temporal ICU patient database to support research in intelligent patient monitoring. Comp Cardiol. 2002;29:641–4.

    Article  CAS  Google Scholar 

  28. Saeed M, Villarroel M, Reisner AT, Clifford G, Lehman LW, Moody G, Heldt T, Kyaw TH, Moody B, Mark RG. Multiparameter intelligent monitoring in intensive care II: a public-access intensive care unit database. Crit Care Med. 2011;39(5):952–60. https://doi.org/10.1097/CCM.0b013e31820a92c6.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Meyer MA, Levine WC, Egan MT, Cohen BJ, Spitz G, Garcia P, Chueh HC, Sandberg WS. A computerized perioperative data integration and display system. Int J Comput Assist Radiol Surg. 2007;2:191–202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael De Georgia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Georgia, M., Kaffashi, F., Jacono, F.J., Loparo, K. (2020). Information Technology in Critical Care. In: De Georgia, M., Loparo, K. (eds) Neurocritical Care Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59307-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59307-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59305-9

  • Online ISBN: 978-3-662-59307-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics