Skip to main content

Züchtung gestern bis heute

  • Chapter
  • First Online:
Generation Gen-Schere
  • 2696 Accesses

Zusammenfassung

Die Züchtung von Pflanzen und Tieren hat eine jahrtausendealte Tradition. Sie begann mit einer einfachen Selektionszüchtung. Hinzu kam die gezielte Kreuzung von Sorten und Rassen. Ab den 1930er Jahren wurden Methoden zur zufälligen Erzeugung genetischer Veränderungen (Mutationen) mit Chemikalien und Strahlung entwickelt. So kam 1934 die erste durch radioaktive Strahlung erzeugte Tabak-Sorte zum Anbau. Egal wie drastisch die Veränderungen der genetischen Information bei dieser Mutationszüchtung sind: Sie ist von Gentechnikgesetz explizit ausgenommen. Mehr und mehr verlagerte sich die Züchtung in das Labor. Bei der Protoplastenfusion werden Zellen fusioniert und bei der Präzisionszüchtung Erbinformation analysiert. Mit dem Einzug der Gentechnologie in den 1970er Jahren wurde die Züchtung präziser. Im Jahr 1992 kam die erste gentechnisch erzeugte Tabak-Sorte auf den Markt, 1994 folgte mit der FlavrSavr-Tomate die erste zum Verzehr zugelassen Pflanze. Während gentechnisch veränderte Bakterien und Pilze als Arbeitspferde der Pharma- und Lebensmittelindustrie ausserhalb des Blickwickels der Öffentlichkeit stehen, unterliegt die Tierzucht einer strengen ethischen Kontrolle. Erst seit den 2000er Jahren gibt es Zulassungen. Und so tief die Gräben zwischen ökologischer und gentechnischer Landwirtschaft sind, so spannend sind die Möglichkeiten, wenn Brücken geschlagen werden. Ähnlich stellt sich die Lage bei der Risikobewertung dar, wo das Wissenschafts- und das Vorsorgeprinzip um die Erklärungshoheit ringen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bacon F (2013) Neu-Atlantis. Reclam, Stuttgart

    Google Scholar 

  2. Darwin C (1995) Die Entstehung der Arten durch natürliche Zuchtwahl. Reclam, Leipzig

    Google Scholar 

  3. Mendel G (1866) Versuche über Pflanzen-Hybriden. Verhandlungen des Naturforschenden Vereins zu Brünn 4: 3–47

    Google Scholar 

  4. de Vries, H (1901–03) Die Mutationstheorie. Bde 1 u 2. Verlage von Veit & Co., Leipzig. https://doi.org/10.5962/bhl.title.11336

  5. Malling HV (2004) History of the science of mutagenesis from a personal perspective. Environ Mol Mutagen 44: 372–386. https://doi.org/10.1002/em.20064

    Article  Google Scholar 

  6. Mishra R (ed) (2012) Mutagenesis. InTech, Rijeka/HR. https://doi.org/10.5772/2937

    Google Scholar 

  7. Muller HJ (1927) Artificial Transmutation of the gene. Science 66: 84–87. https://doi.org/10.1126/science.66.1699.84

    Article  Google Scholar 

  8. Stadler LJ (1928) Mutations in barley induced by x-rays and radium. Science 68: 186–187. https://doi.org/10.1126/science.68.1756.186

    Article  Google Scholar 

  9. Vose PB (1980) Introduction to nuclear techniques in agronomy and plant biology. Pergamon Press Ltd, Oxford/UK

    Chapter  Google Scholar 

  10. Johnson P (2013) Safeguarding the atom: the nuclear enthusiasm of Muriel Howorth. Brit J Hist Sci 45: 551–571. https://doi.org/10.1017/S0007087412001057

    Article  Google Scholar 

  11. Murray MJ, Todd WA (1972) Registration of Todd’s Mitcham Peppermint. Crop Sci 12: 128. https://doi.org/10.2135/cropsci1972.0011183x001200010056x

    Article  Google Scholar 

  12. Broertjes C, van Harten AM (Edt) (1988) Applied mutation breeding for vegetatively propagated crops: Vol 12. Elsevier Science Ltd, Amsterdam/NL

    Google Scholar 

  13. Case 528/16. (2018) In: InfoCuria. Aufgerufen am 23.04.2019: curia.europa.eu/juris/documents.jsf?num=c-528/16

  14. Nabholz M, Miggiano V, Bodmer W (1969) Genetic analysis with human-mouse somatic cell hybrids. Nature 223: 358–363. https://doi.org/10.1038/223358a0

    Article  Google Scholar 

  15. Anton AC, Grommen R, Hessels G, et al (2012) Studie über einen neuen potenziellen Impfstoff gegen Rhodococcus equi-Infektionen bei Fohlen. Tierärztliche Umschau 67:394–400

    Google Scholar 

  16. Lederberg J (1952) Cell genetics and hereditary symbiosis. Physiol Rev 32: 403–430. https://doi.org/10.1152/physrev.1952.32.4.403

    Article  Google Scholar 

  17. Chang AC, Cohen SN (1974) Genome construction between bacterial species in vitro: replication and expression of Staphylococcus plasmid genes in Escherichia coli. Proc Natl Acad Sci USA 71: 1030–1034. https://doi.org/10.1073/pnas.71.4.1030

    Article  Google Scholar 

  18. Cohen SN, Boyer HW (1980) Process for Producing Biologically Functional Molecular Chimeras. US Patent 4,237,224, initially filed November 4, 1974, issued December 2, 1980

    Google Scholar 

  19. Berg P, Mertz JE (2010) Personal Reflections on the Origins and Emergence of Recombinant DNA Technology. Genetics 184: 9–17. https://doi.org/10.1534/genetics.109.112144

    Article  Google Scholar 

  20. Schell J, Van Montagu M (1977) The Ti-Plasmid of Agrobacterium tumefaciens, A Natural Vector for the Introduction of NIF Genes in Plants? In: Genetic Engineering for Nitrogen Fixation. Springer, Boston, Massachusetts/USA, S. 159–179. https://doi.org/10.1007/978-1-4684-0880-5_12

    Chapter  Google Scholar 

  21. Zambryski P, Joos H, Genetello C, et al (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150. https://doi.org/10.1002/j.1460-2075.1983.tb01715.x

    Article  Google Scholar 

  22. ISAAA (2017) Global Status of Commercialized Biotech/GM Crops in 2017: Biotech Crop Adoption Surges as Economic Benefits Accumulate in 22 Years. ISAAA Brief No. 53. ISAAA, Ithaca, New York/USA

    Google Scholar 

  23. Muth J, Hartje S, Twyman RM, et al (2008) Precision breeding for novel starch variants in potato. Plant Biotechnol J 6: 576–584. https://doi.org/10.1111/j.1467-7652.2008.00340.x

    Article  Google Scholar 

  24. Andersson M, Turesson H, Olsson N, et al (2018) Genome editing in potato via CRISPR‐Cas9 ribonucleoprotein delivery. Physiol Plant 164: 378–384. https://doi.org/10.1111/ppl.12731

    Article  Google Scholar 

  25. Callaway E (2018) CRISPR plants now subject to tough GM laws in European Union. Nature 560: 16. https://doi.org/10.1038/d41586-018-05814-6

    Article  Google Scholar 

  26. Eckerstorfer MF, Engelhard M, Heissenberger A, et al (2019) Plants Developed by New Genetic Modification Techniques—Comparison of Existing Regulatory Frameworks in the EU and Non-EU Countries. Front Bioeng Biotechnol 7: 26. https://doi.org/10.3389/fbioe.2019.00026

    Article  Google Scholar 

  27. Kahrmann J, Leggewie G (2018) Gentechnikrechtliches Grundsatzurteil des EuGH und die Folgefragen für das deutsche Recht. NuR 40: 761–765. https://doi.org/10.1007/s10357-018-3429-8

    Article  Google Scholar 

  28. Bulla LA (1975) Bacteria as insect pathogens. Annu Rev Microbiol 29: 163–190. https://doi.org/10.1146/annurev.mi.29.100175.001115

    Article  Google Scholar 

  29. Candas M, Bulla LA (2002) Microbial insecticides. In: Bitton G (Ed) Encyclopedia of Environmental Microbiology. John Wiley and Sons, New York/USA, S 1709-17. https://doi.org/10.1002/0471263397.env258

  30. Franz JM, Krieg A (1961) Schädlingsbekämpfung mit Bakterien (Bacillus thuringiensis). Gesunde Pflanzen 13: 199–204

    Google Scholar 

  31. Bioland Richtlinien (2019) Bioland e. V., Mainz

    Google Scholar 

  32. Gonsalves D, Ferreira S (2003) Transgenic Papaya: A Case for Managing Risks of Papaya ringspot virus in Hawaii. Plant Health Progress 4: 17. https://doi.org/10.1094/php-2003-1113-03-rv

    Article  Google Scholar 

  33. Tena G (2017) Sweet transgenic immunity. Nat Plants 3: 911. https://doi.org/10.1038/s41477-017-0080-y

    Article  Google Scholar 

  34. Dale J, James A, Paul J-Y, et al (2017) Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Comm 8: 1496. https://doi.org/10.1038/s41467-017-01670-6

    Article  Google Scholar 

  35. Pew Research Center (2018) Most Americans Accept Genetic Engineering of Animals That Benefits Human Health, but Many Oppose Other Uses. In: Pew Research Center. Aufgerufen am 16.03.2019: pewinternet.org/wp-content/uploads/sites/9/2018/08/PS_2018.08.16_biotech-animals_FINAL.pdf

  36. Editorial (2019) Hybrid embryos, ketamine drug and dark photons. Nature 567: 150–151. https://doi.org/10.1038/d41586-019-00790-x

  37. Ledford H (2015) Salmon approval heralds rethink of transgenic animals. Nature 527: 417–418. https://doi.org/10.1038/527417a

    Article  Google Scholar 

  38. Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12: 316–328. https://doi.org/10.1038/nrg2971

    Article  Google Scholar 

  39. Yang B, Wang J, Tang B, et al (2011) Characterization of Bioactive Recombinant Human Lysozyme Expressed in Milk of Cloned Transgenic Cattle. PLoS One 6: e17593. https://doi.org/10.1371/journal.pone.0017593

    Article  Google Scholar 

  40. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214: 1244–1246. https://doi.org/10.1126/science.6272397

    Article  Google Scholar 

  41. Smith K, Spadafora C (2005) Sperm-mediated gene transfer: Applications and implications. BioEssays 27: 551–562. https://doi.org/10.1002/bies.20211

    Article  Google Scholar 

  42. Dobrinski I (2005) Germ Cell Transplantation. Semin Reprod Med 23: 257–265. https://doi.org/10.1055/s-2005-872454

    Article  Google Scholar 

  43. Diekämper J, Fangerau H, Fehse B, et al (eds) (2018) Vierter Gentechnologiebericht. Nomos Verlagsgesellschaft, Baden-Baden

    Google Scholar 

  44. Jaenisch R, Mintz B (1974) Simian virus 40 DNA sequences in DNA of healthy adult mice derived from preimplantation blastocysts injected with viral DNA. Proc Natl Acad Sci USA 71: 1250–1254. https://doi.org/10.1073/pnas.71.4.1250

    Article  Google Scholar 

  45. Manafi M (Ed) (2011) Artificial Insemination in Farm Animals. InTech, Rijeka/HR. https://doi.org/10.5772/713

    Google Scholar 

  46. Schramm GP, Nutztieren HPKBB, 1991 (2005) Künstliche Besamung beim Geflügel. Züchtungskunde 77: 206–217

    Google Scholar 

  47. Park K-E, Kaucher AV, Powell A, et al (2017) Generation of germline ablated male pigs by CRISPR/Cas9 editing of the NANOS2 gene. Sci Rep 7: 40176. https://doi.org/10.1038/srep40176

    Article  Google Scholar 

  48. Tait-Burkard C, Doeschl-Wilson A, McGrew MJ, et al (2018) Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals. Genome Biol 19: 204. https://doi.org/10.1186/s13059-018-1583-1

  49. Carlson DF, Lancto CA, Bin Zang, et al (2016) Production of hornless dairy cattle from genome-edited cell lines. Nat Biotechnol 34: 479–481. https://doi.org/10.1038/nbt.3560

    Article  Google Scholar 

  50. Ronald PC, Adamchak RW (2008) Tomorrow’s Table: Organic Farming, Genetics, and the Future of Food. Oxford University Press, New York/USA. https://doi.org/10.1093/acprof:oso/9780195301755.001.0001

    Google Scholar 

  51. Xu K, Xu X, Fukao T, et al (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442: 705–708. https://doi.org/10.1038/nature04920

    Article  Google Scholar 

  52. Mackill DJ, Ismail AM, Singh US, et al (2012) Development and Rapid Adoption of Submergence-Tolerant (Sub1) Rice Varieties. Adv Agron 115: 299–352. https://doi.org/10.1016/B978-0-12-394276-0.00006-8

    Google Scholar 

  53. Herzog M, Fukao T, Winkel A, et al (2018) Physiology, gene expression, and metabolome of two wheat cultivars with contrasting submergence tolerance. Plant, Cell Environ 41: 1632–1644. https://doi.org/10.1111/pce.13211

    Article  Google Scholar 

  54. Herzog M (2017) Mechanisms of flood tolerance in wheat and rice. University of Copenhagen, Dissertation

    Google Scholar 

  55. Karberg S (2018) Crispr ist nicht immer Gentechnik. In: Der Tagesspiegel. Aufgerufen am 16.04.2019: tagesspiegel.de/wissen/europaeischer-gerichtshof-vor-der-entscheidung-crispr-ist-nicht-immer-gentechnik/20864058.html

  56. Universität für Bodenkultur Wien (2019) Biolandbau und Gene Editing – eine (un-)mögliche Kombination? In: YouTube. Aufgerufen am 27.02.2019: youtu.be/mGhV0BvXnsg

  57. Muller A, Schader C, Scialabba NE-H, et al (2017) Strategies for feeding the world more sustainably with organic agriculture. Nature Comm 8: 1290. https://doi.org/10.1038/s41467-017-01410-w

    Article  Google Scholar 

  58. Papst Franziskus (2015) Enzyklika Laudato Si’. Libreria Editrice Vaticana

    Google Scholar 

  59. Berg P, Baltimore D, Boyer HW, et al (1974) Potential biohazards of recombinant DNA molecules. Science 185: 303. https://doi.org/10.1126/science.185.4148.303

    Article  Google Scholar 

  60. Berg P, Baltimore D, Brenner S, et al (1975) Summary statement of the Asilomar conference on recombinant DNA molecules. Proc Natl Acad Sci USA 72: 1981–1984. https://doi.org/10.1073/pnas.72.6.1981

    Article  Google Scholar 

  61. Berg P (2008) Meetings that changed the world: Asilomar 1975: DNA modification secured. Nature 455: 290–291. https://doi.org/10.1038/455290a

    Article  Google Scholar 

  62. Gartland WJ, Stetten D (1976) Guidelines for Research Involving Recombinant DNA Molecules. National Institutes of Health (U.S.)

    Google Scholar 

  63. Röbbelen G (1976) Züchtung und Erzeugung von Qualitätsraps in Europa. Eur J Lipid Sci Technol 78: 10–17. https://doi.org/10.1002/lipi.19760780102

    Article  Google Scholar 

  64. Sauermann W (2014) Von 0 auf 00 bis zum Hybridraps. Bauernblatt 28–31

    Google Scholar 

  65. Meyer P, Heidmann I, Forkmann G, Saedler H (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330: 677–678. https://doi.org/10.1038/330677a0

    Article  Google Scholar 

  66. Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2: 279–289. https://doi.org/10.1105/tpc.2.4.279

    Article  Google Scholar 

  67. Sen GL, Blau HM (2006) A brief history of RNAi: the silence of the genes. FASEB J 20: 1293–1299. https://doi.org/10.1096/fj.06-6014rev

    Article  Google Scholar 

  68. Bashandy H, Teeri TH (2017) Genetically engineered orange petunias on the market. Planta 246: 277–280. https://doi.org/10.1007/s00425-017-2722-8

    Article  Google Scholar 

  69. Oud JSN, Schneiders H, Kool AJ, van Grinsven MQJM (1995) Breeding of transgenic orange Petunia hybrida varieties. In: The Methodology of Plant Genetic Manipulation: Criteria for Decision Making. Springer Verlag, Dordrecht/NL, S 403–409. https://doi.org/10.1007/978-94-011-0357-2_49

    Chapter  Google Scholar 

  70. Touchon M, Hoede C, Tenaillon O, et al (2009) Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths. PLoS Genet 5: e1000344. https://doi.org/10.1371/journal.pgen.1000344

    Article  Google Scholar 

  71. Stokes HW, Gillings MR (2011) Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol Rev 35: 790–819. https://doi.org/10.1111/j.1574-6976.2011.00273.x

    Article  Google Scholar 

  72. Sjölund M, Bonnedahl J, Hernandez J, et al (2008) Dissemination of Multidrug-Resistant Bacteria into the Arctic. Emerging Infect Dis 14: 70–72. https://doi.org/10.3201/eid1401.070704

    Article  Google Scholar 

  73. Bartoloni A, Pallecchi L, Rodríguez H, et al (2009) Antibiotic resistance in a very remote Amazonas community. Int J Antimicrob Agents 33: 125–129. https://doi.org/10.1016/j.ijantimicag.2008.07.029

    Article  Google Scholar 

  74. Clemente JC, Pehrsson EC, Blaser MJ, et al (2015) The microbiome of uncontacted Amerindians. Sci Adv 1: e1500183. https://doi.org/10.1126/sciadv.1500183

    Article  Google Scholar 

  75. Dunning LT, Olofsson JK, Parisod C, et al (2019) Lateral transfers of large DNA fragments spread functional genes among grasses. Proc Natl Acad Sci USA 116: 4416–4425. https://doi.org/10.1073/pnas.1810031116

    Article  Google Scholar 

  76. Stegemann S, Bock R (2009) Exchange of Genetic Material Between Cells in Plant Tissue Grafts. 324: 649–651. https://doi.org/10.1126/science.1170397

    Article  Google Scholar 

  77. Van Valen L (1973) A new evolutionary law. Evol Theory 1: 1–30

    Google Scholar 

  78. Carroll L (1974) Alice hinter den Spiegeln. Insel Verlag, Leipzig

    Google Scholar 

  79. Hochachka PW, Somero GN (2002) Biochemical Adaptation. Oxford University Press, New York/USA

    Google Scholar 

  80. Séralini G-E, Clair E, Mesnage R, et al (2012) RETRACTED: Long term toxicity of a Roundup herbicide and a Roundup-tolerant genetically modified maize. Food Chem Toxicol 50: 4221–4231. https://doi.org/10.1016/j.fct.2012.08.005

    Article  Google Scholar 

  81. Steinberg P, van der Voet H, Goedhart PW, et al (2019) Lack of adverse effects in subchronic and chronic toxicity/carcinogenicity studies on the glyphosate-resistant genetically modified maize NK603 in Wistar Han RCC rats. Arch Toxicol 9: 1–45. https://doi.org/10.1007/s00204-019-02400-1

    Article  Google Scholar 

  82. Sánchez MA, Parrott WA (2017) Characterization of scientific studies usually cited as evidence of adverse effects of GM food/feed. Plant Biotechnol J 15: 1227–1234. https://doi.org/10.1111/pbi.12798

    Article  Google Scholar 

  83. Sleator RD (2016) Synthetic biology: from mainstream to counterculture. Arch Microbiol 198: 711–713. https://doi.org/10.1007/s00203-016-1257-x

    Article  Google Scholar 

  84. Grunwald HA, Gantz VM, Poplawski G, et al (2019) Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature 566: 105–109. https://doi.org/10.1038/s41586-019-0875-2

    Article  Google Scholar 

  85. Simon S, Otto M, Engelhard M (2018) Synthetic gene drive: between continuity and novelty: Crucial differences between gene drive and genetically modified organisms require an adapted risk assessment for their use. EMBO Rep 19: e45760–4. https://doi.org/10.15252/embr.201845760

    Article  Google Scholar 

  86. Tanaka H, Stone HA, Nelson DR (2017) Spatial gene drives and pushed genetic waves. Proc Natl Acad Sci USA 114: 8452–8457. https://doi.org/10.1073/pnas.1705868114

    Article  Google Scholar 

  87. Esvelt KM, Gemmell NJ (2017) Conservation demands safe gene drive. PLoS Biol 15:e2003850. https://doi.org/10.1371/journal.pbio.2003850

    Article  Google Scholar 

  88. Reeves RG, Voeneky S, Caetano-Anollés D, et al (2018) Agricultural research, or a new bioweapon system? Science 362: 35–37. https://doi.org/10.1126/science.aat7664

    Article  Google Scholar 

  89. Sills J, Simon S, Otto M, Engelhard M (2018) Scan the horizon for unprecedented risks. Science 362:1007–1008. https://doi.org/10.1126/science.aav7568

    Article  Google Scholar 

  90. Pearce F (2008) Ozone hole? What ozone hole? New Sci 199: 46–47. https://doi.org/10.1016/S0262-4079(08)62382-9

    Article  Google Scholar 

  91. Farman JC, Gardiner BG, Nature JS (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315: 207–210. https://doi.org/10.1038/315207a0

    Article  Google Scholar 

Weiterführende Literatur

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Röbbe Wünschiers .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wünschiers, R. (2019). Züchtung gestern bis heute. In: Generation Gen-Schere . Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59048-5_3

Download citation

Publish with us

Policies and ethics