Skip to main content

Zellbiologische Grundlagen

  • Chapter
  • First Online:
Der Experimentator: Zellkultur

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 8654 Accesses

Zusammenfassung

Über solides Grundlagenwissen auf dem Gebiet der Zellbiologie zu verfügen ist nicht nur für die Interpretation der mit Zellkulturen gewonnen Ergebnisse von großer Bedeutung, sondern besonders dann, wenn es mal nicht so gut läuft und der Anwender gezwungen ist eine Fehleranalyse zu machen. Um eine geschickte Problemlösungsstrategie entwickeln zu können, muss der Anwender über die Grundlagen hinaus auch über den aktuellen Wissensstand auf den verschiedenen Gebieten der Zellbiologie informiert sein. Das folgende Kapitel bietet daher aktuelle Informationen zu den Themen zelluläre Seneszenz, Zellzyklus, Zelltodmechanismen, Krebsentstehung und Immortalisierung. Damit sollte jeder Zellkultur-Experimentator für die Problemanalyse gut gerüstet und der Lösung rasch auf der Spur sein.

Der Narr hält sich für weise, aber der Weise weiß, dass er ein Narr ist!

Aus: Wie es Euch gefällt

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Harvey L, Arnold B, Chris AK, Angelika A, Hidde P, Anthony B, Monty K, Kelsey CM (2016) Molecular Cell Biology, 8. global. Aufl.

    Google Scholar 

  2. Müller-Esterl W (2018) Biochemie: eine Einführung für Mediziner und Naturwissenschaftler – unter Mitarbeit von Ulrich Brandt, Oliver Anderka, Stefan Kerscher, Stefan Kieß und Katrin Ridinger, 3. korr. Aufl.

    Google Scholar 

  3. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  CAS  Google Scholar 

  4. Gonzalez OG, Assfalg R, Koch S, Schelling A, Meena JK, Kraus J, Lechel A, Katz SF, Benes V, Scharffetter-Kochanek K, Kestler HA, Gunes C, Iben S (2014) Telomerase stimulates ribosomal DNA transcription under hyperproliferative conditions. Nat Commun 5:4599

    Article  CAS  Google Scholar 

  5. Schmitz S, Desel C (2018) Der Experimentator Zellbiologie. Springer Spektrum, Berlin, S 200

    Book  Google Scholar 

  6. Evangelou K, Lougiakis N, Rizou SV, Kotsinas A, Kletsas D, Munoz-Espin D, Kastrinakis NG, Pouli N, Marakos P, Townsend P, Serrano M, Bartek J, Gorgoulis VG (2017) Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 16:192–197

    Article  CAS  Google Scholar 

  7. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 106:761–771

    Article  CAS  Google Scholar 

  8. Howard A, Pelc SR (1951) Synthesis of nucleoprotein in bean root cells. Nature 167:599–600

    Article  CAS  Google Scholar 

  9. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    Article  CAS  Google Scholar 

  10. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  Google Scholar 

  11. Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  CAS  Google Scholar 

  12. McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:a008656

    Article  Google Scholar 

  13. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80

    Article  CAS  Google Scholar 

  14. Zhou W, Yuan J (2014) Necroptosis in health and diseases. Semin Cell Dev Biol 35:14–23

    Article  Google Scholar 

  15. Zhang J, Yang Y, He W, Sun L (2016) Necrosome core machinery: MLKL. Cell Mol Life Sci 73:2153–2163

    Article  CAS  Google Scholar 

  16. de Almagro MC, Vucic D (2015) Necroptosis: pathway diversity and characteristics. Semin Cell Dev Biol 39:56–62

    Article  Google Scholar 

  17. Degterev A, Maki JL, Yuan J (2013) Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ 20:366

    Article  CAS  Google Scholar 

  18. Degterev A, Zhou W, Maki JL, Yuan J (2014) Assays for necroptosis and activity of RIP kinases. Methods Enzymol 545:1–33

    Article  CAS  Google Scholar 

  19. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112

    Article  CAS  Google Scholar 

  20. Broker LE, Kruyt FA, Giaccone G (2005) Cell death independent of caspases: a review, clinical cancer research. An Official Journal of the American Association for Can Res 11:3155–3162

    Article  Google Scholar 

  21. Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24:2592–2602

    Article  CAS  Google Scholar 

  22. Green DR, Victor B (2012) The pantheon of the fallen: why are there so many forms of cell death? Trends Cell Biol 22:555–556

    Article  Google Scholar 

  23. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  Google Scholar 

  24. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209

    Article  CAS  Google Scholar 

  25. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R, Tang D (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379

    Article  CAS  Google Scholar 

  26. Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ 3rd, Kang R, Tang D (2016) Autophagy promotes ferroptosis by degradation of ferritin. Autophagy 12:1425–1428

    Article  CAS  Google Scholar 

  27. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trumbach D, Mao G, Qu F, Bayir H, Fullekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JP, Conrad M (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98

    Article  CAS  Google Scholar 

  28. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D’Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G (2018) Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ 25:486–541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Schmitz .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, S. (2020). Zellbiologische Grundlagen. In: Der Experimentator: Zellkultur. Experimentator. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58951-9_2

Download citation

Publish with us

Policies and ethics