Skip to main content

Praktisches Messen von Fließeigenschaften

  • Chapter
  • First Online:
Pulver und Schüttgüter

Part of the book series: VDI-Buch ((CHEMTECH))

  • 6968 Accesses

Zusammenfassung

Die im Kap. 3 erläuterten Fließeigenschaften (Fließorte, Zeitfließorte, Wandfließorte) werden mit Schergeräten gemessen. Dies wird detailliert anhand des Jenike-Schergerätes und des Ringschergerätes gezeigt. Außerdem werden Hinweise zu verschiedenen Messprozeduren und zur Auswahl der Normalspannungen gegeben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Gebhard H (1982) Scherversuche an leicht verdichteten Schüttgütern unter besonderer Berücksichtigung des Verformungsverhaltens, Fortschr.-Ber. VDI-Z., Reihe 3, Nr. 68, VDI-Verlag, Düsseldorf

    Google Scholar 

  2. Wilms H, Schwedes J (1985) Interpretation of ring shear tests. Bulk Solids Handl 5:1017–1020

    Google Scholar 

  3. Hesse T, Hoffmann OH (1977) Scherverhalten körniger landwirtschaftlicher Haufwerke. Grundl Landtech 27:205–213

    Google Scholar 

  4. Münz G (1976) Entwicklung eines Ringschergerätes zur Messung der Fließeigenschaften von Schüttgütern und Bestimmung des Einflusses der Teilchengrößenverteilung auf die Fließeigenschaften kohäsiver Kalksteinpulver. Dissertation, Univ. Karlsruhe

    Google Scholar 

  5. Peschl IASZ (1989) Equipment for the measurement of mechanical properties of bulk materials. Powder Handl Process 1:73–81

    Google Scholar 

  6. Peschl IASZ (1989) Measurement and evaluation of mechanical properties of powders. Powder Handl Process 1:135–142

    Google Scholar 

  7. Schmitt R, Feise H (2004) Influence of tester geometry, speed and procedure on the results from a ring shear tester. Part Part Syst Charact 21:403–410

    Article  Google Scholar 

  8. Jenike AW (1980) Storage and flow of solids. Bull. No. 123, 20th Printing, revised 1980. Eng. Exp. Station, Univ. of Utah, Salt Lake City (Erstveröffentlichung 1964)

    Google Scholar 

  9. Jenike AW (1961) Gravity flow of bulk solids. Bull. No. 108, Eng. Exp. Station, Univ. Utah, Salt Lake City

    Google Scholar 

  10. Schwedes J (1979) Vergleichende Betrachtungen zum Einsatz von Schergeräten zur Messung von Schüttguteigenschaften. Proc. PARTEC, Nürnberg, S 278–300

    Google Scholar 

  11. Schwedes J, Schulze D (1990) Measurement of flow properties of bulk solids. Powder Technol 61:59–68

    Article  Google Scholar 

  12. Schulze D (1985) Einfluß unterschiedlicher Scherzellengeometrien auf die Ergebnisse von Scherversuchen. Studienarbeit am Institut für Mechanische Verfahrenstechnik der TU Braunschweig (unveröffentlicht)

    Google Scholar 

  13. The Institution of Chemical Engineers (Hrsg) (1989) Standard shear testing technique for particulate solids using the Jenike shear cell. Rugby, England (Deutsche Übersetzung: Feise HJ (2004) Standardmethode zur Charakterisierung von Schüttgütern. DECHEMA e. V., Frankfurt a. M.)

    Google Scholar 

  14. ASTM Standard D6128 (2016) Standard test method for shear testing of bulk solids using the Jenike shear cell. ASTM International. www.astm.org. Zugegriffen: 23. Sept. 2018

  15. Schulze D (1996) Vergleich des Fließverhaltens leicht fließender Schüttgüter. Schüttgut 2:347–356

    Google Scholar 

  16. Hvorslev MJ (1937) Über die Festigkeitseigenschaften gestörter bindiger Böden. Ingeniørvidenskabelige Skrifter A, Nr. 45, Kopenhagen

    Google Scholar 

  17. Carr JF, Walker DM (1967/1968) An annular shear cell for granular materials. Powder Technol 1:369–373

    Article  Google Scholar 

  18. Bagster DF (1981) Tests on a very large shear cell. Bulk Solids Handl 1:743–746

    Google Scholar 

  19. Rippie EG, Chou CH (1978) Kinetics of mass transport in sheared particular beds: Markov chains. Powder Technol 21:205–216

    Article  Google Scholar 

  20. Bagster DF, Arnold PC, Roberts AW, Fitzgerald TF (1974) The interpretation of ring shear results. Powder Technol 9:135–139

    Article  Google Scholar 

  21. Novosad J (1964) Studies on granular materials II, apparatus for measuring the dynamic angle of internal and external friction of granular materials. Collect Czechoslov Chem Commun 29:2697–2701

    Article  Google Scholar 

  22. Bishop AW, Green GE, Garga VK, Anderson A, Brown JD (1971) A new ring shear test apparatus and its application to the measurement of residual strength. Géotechnique 21:273–328

    Article  Google Scholar 

  23. Scarlett B, Todd AC (1968) A split ring annular shear cell for the determination of the shear strength of powder. J Phys Sci Instrum 1:655–656

    Article  Google Scholar 

  24. Schulze D (1994) Entwicklung und Anwendung eines neuartigen Ringschergerätes. Aufbereitungstechnik 35:524–535

    Google Scholar 

  25. Schulze D (1995) Appropriate devices for the measurement of flow properties for silo design and quality control. Preprints PARTEC 95 „3rd Europ. symp. storage and flow of particulate solids“, 21.–23.3.1995, Nürnberg, S 45–56

    Google Scholar 

  26. ASTM Standard D6773 (2016) Standard shear test method for bulk solids using the Schulze ring shear tester. ASTM International. www.astm.org. Zugegriffen: 23. Sept. 2018

  27. Schulze D (1998) Measurement of flow properties of particulate solids in food and pharmaceutical technology using a new automated ring shear tester. Preprints PARTEC „1st Europ. symp. process technology in pharmaceutical and nutritional sciences“, 10.–12.3.1998, Nürnberg, S 276–285

    Google Scholar 

  28. Tissen C, Woertz K, Breitkreutz J, Kleinebudde P (2011) Development of mini-tablets with 1 mm and 2 mm diameter. Int J Pharm 416(1):164–170

    Article  Google Scholar 

  29. Chattoraj S, Shi L, Sun CC (2011) Profoundly improving flow properties of a cohesive cellulose powder by surface coating with nano-silica through comilling. J Pharm Sci 100(11):4943–4952

    Article  Google Scholar 

  30. Althaus TO, Windhab EJ, Scheuble N (2012) Effect of pendular liquid bridges on the flow behavior of wet powders. Powder Technol 217:599–606

    Article  Google Scholar 

  31. Mullarney MP, Beach LE, Davé RN, Langdon BA, Polizzi M, Blackwood DO (2012) Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol 212:397–402

    Article  Google Scholar 

  32. Landi G, Barletta D, Poletto M (2011) Modelling and experiments on the effect of air humidity on the flow properties of glass powders. Powder Technol 207:437–443

    Article  Google Scholar 

  33. Venkatesh S (2009) Designing mass-flow silos for grain storage. Bulk Solids Handl 29:158–162

    Google Scholar 

  34. Shi L, Feng Y, Sun CC (2011) Origin of profound changes in powder properties during wetting and nucleation stages of high-shear wet granulation of microcrystalline cellulose. Powder Technol 208:663–668

    Article  Google Scholar 

  35. Shi L, Feng Y, Sun CC (2011) Massing in high-shear wet granulation can simultaneously improve powder flow and deteriorate powder compaction: a double-edged sword. Eur J Pharm Sci 43:50–56

    Article  MathSciNet  Google Scholar 

  36. Roth C, Künsch Z, Sonnenfeld A, von Rohr PR (2011) Plasma surface modification of powders for pharmaceutical applications. Surf Coat Technol 205:597–600

    Article  Google Scholar 

  37. Djuric D, Van Melkebeke B, Kleinebudde P, Remon JP, Vervaet C (2009) Comparison of two twin-screw extruders for continuous granulation. Eur J Pharm Biopharm 71:155–160

    Article  Google Scholar 

  38. Watling CP, Elliott JA, Cameron RE (2010) Entrainment of lactose inhalation powders: a study using laser diffraction. Eur J Pharm Sci 40:352–358

    Article  Google Scholar 

  39. Yu W, Muteki H, Zhang L, Kim G (2011) Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions. J Pharm Sci 100(1):284–293

    Article  Google Scholar 

  40. Palzer S (2005) The effect of glass transition on the desired and undesired agglomeration of amorphous food powders. Chem Eng Sci 60:3959–3968

    Article  Google Scholar 

  41. Hartmann M, Palzer S (2011) Caking of amorphous powders – material aspects, modelling and applications. Powder Technol 60:112–121

    Article  Google Scholar 

  42. Fatah N (2009) Study and comparison of micronic and nanometric powders: analysis of physical, flow and interparticle properties of powders. Powder Technol 190:41–47

    Article  Google Scholar 

  43. Hou H, Sun CC (2008) Quanitfying effects of particulate properties on powder flow properties using a ring shear tester. J Pharm Sci 97(9):4030–4039

    Article  Google Scholar 

  44. Mansa RF, Bridson RH, Greenwood RW, Barker H, Seville JPK (2008) Using intelligent software to predict the effects of formulation and processing parameters on roller compaction. Powder Technol 181:217–225

    Article  Google Scholar 

  45. Liu LX, Marziano I, Bentham AC, Litster JD, White ET, Howes T (2008) Effect of particle properties on the flowability of ibuprofen powders. Int J Pharm 363:109–117

    Article  Google Scholar 

  46. Butscher A, Bohner M, Roth C, Ernstberger A, Heuberger R, Doebelin N, von Rohr PR, Müller R (2012) Printability of calcium phosphate powders for three-dimensional printing of tissue engineering scaffolds. Acta Biomater 8:373–385

    Article  Google Scholar 

  47. Descamps N, Palzer S, Roos YH, Fitzpatrick JJ (2013) Glass transition and flowability/caking behaviour of maltodextrin DE 21. J Food Eng 119:809–813

    Article  Google Scholar 

  48. Calvert G, Ghadiri M, Dyson M, Kippax P, McNeil-Watson F (2013) The flowability and aerodynamic dispersion of cohesive powders. Powder Technol 240:88–94

    Article  Google Scholar 

  49. Kojima T, Elliott JA (2012) Incipient flow properties of two-component fine powder systems and their relationships with bulk density and particle contact. Powder Technol 228:359–370

    Article  Google Scholar 

  50. Kojima T, Elliott JA (2013) Effect of silica nanoparticles on the bulk flow properties of fine cohesive powders. Chem Eng Sci 101:315–328

    Article  Google Scholar 

  51. Shi L, Chattoraj S, Sun CC (2011) Reproducibility of flow properties of microcrystalline cellulose – avicel PH102. Powder Technol 212:253–257

    Article  Google Scholar 

  52. Spillmann A, Sonnenfeld A, von Rohr PR (2007) Improvement of flow behavior of lactose powder by plasma enhanced chemical vapor deposition. Proc. PARTEC 2007, Nürnberg, 27.–29.3.2007, Paper, S 36–6

    Google Scholar 

  53. Trementozzi AN, Leung C-Y, Osei-Yeboah F, Irdam E, Lin Y, MacPhee JM, Boulas P, Karki SB, Zawaneh PN (2017) Engineered particles demonstrate improved flow properties at elevated drug loadings for direct compression manufacturing. Int J Pharm 523:133–141

    Article  Google Scholar 

  54. Jager PD, Bramante T, Luner PE (2015) Assessment of pharmaceutical powder flowability using shear cell-based methods and application of Jenike’s methodology. J Pharm Sciences 104:3804–3813

    Article  Google Scholar 

  55. Marigo M, Cairns DL, Bowen J, Ingram A, Stitt EH (2014) Relationship between single and bulk mechanical properties forzeolite ZSM5 spray-dried particles. Particuology 14:130–138

    Article  Google Scholar 

  56. Upadhyay PP, Pudasaini N, Mishra MK, Ramamurty U, Rantanen J (2018) Early assessment of bulk powder processability as a part of solid form screening. Chem Eng Res Design 136:447–455

    Article  Google Scholar 

  57. Klinkmüller M, Schreurs G, Rosenau M, Kemnitz H (2016) Properties of granular analogue model materials: a community wide survey. Tectonophysics 684:23–38

    Article  Google Scholar 

  58. Vasilenko A, Koynov S, Glasser BJ, Muzzio FJ (2013) Role of consolidation state in the measurement of bulk density and cohesion. Powder Technol 239:366–373

    Article  Google Scholar 

  59. Prziwara P, Breitung-Faes S, Kwade A (2018) Impact of grinding aids on dry grinding performance, bulk properties and surface energy. Adv Powder Technol 29:416–425

    Article  Google Scholar 

  60. da Silva DF, Ahrné L, Larsen FH, Hougaard AB, Ipsen R (2018) Physical and functional properties of cheese powders affected by sweet whey powder addition before or after spray drying. Powder Technol 323:139–148

    Article  Google Scholar 

  61. Paul S, Chang S-Y, Dun J, Sun W-J, Wang K, Tajarobi P, Boissier C, Sun CC (2018) Comparative analyses of flow and compaction properties of diverse mannitol and lactose grades. Int J Pharm 546:39–49

    Article  Google Scholar 

  62. Salehi H, Barletta D, Poletto M (2017) A comparison between powder flow property testers. Particuology 32:10–20

    Article  Google Scholar 

  63. Leung LY, Mao C, Srivastava I, Du P, Yang C-Y (2017) Flow function of pharmaceutical powders is predominantly governed by cohesion, not by friction coefficients. J Pharm Sciences 106:1865–1873

    Article  Google Scholar 

  64. Carpin M, Bertelsen H, Dalberg A, Roiland C, Risbo J, Schuck P, Jeantet R (2017) Impurities enhance caking in lactose powder. J Food Eng 198:91–97

    Article  Google Scholar 

  65. Carpin M, Bertelsen H, Dalberg A, Bech JK, Risbo J, Schuck P, Jeantet R (2017) How does particle size influence caking in lactose powder? J Food Eng 209:61–67

    Article  Google Scholar 

  66. Swize T, Osei-Yeboah F, Peterson ML, Boulas P (2019) Impact of shear history on powder flow characterization using a ring shear tester. J Pharm Sci. 108:750–754

    Google Scholar 

  67. Shi H, Mohanty R, Chakravarty S, Cabiscol R, Morgeneyer M, Zetzener H, Ooi JY, Kwade A, Luding S, Magnanimo V (2018) Effect of particle size and cohesion on powder yielding and flow. KONA 35:226–250

    Article  Google Scholar 

  68. Stasiak M, Molenda M, Opaliński I, Błasiak W (2013) Mechanical properties of native maize, wheat, and potato starches. Czech J Food Sci 31:347–354

    Article  Google Scholar 

  69. Slettengren K, Heunemann P, Knuchel O, Windhab EJ (2015) Production and characterization of fat based powder-liquids and powder-liquid mixtures. Powder Technol 277:105–111

    Article  Google Scholar 

  70. Søgaard SV, Pedersen T, Allesø M, Garnaes J, Rantanen J (2015) Evaluation of ring shear testing as a characterization method for powder flow in small-scale powder processing equipment. Int J Pharm 475:315–323

    Article  Google Scholar 

  71. Sun CC (2016) Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technol 289:104–108

    Article  Google Scholar 

  72. Schulze D (2010) Ringversuch mit Ringschergeräten. Schüttgut 16:146–153

    Google Scholar 

  73. Schulze D (2011) Round Robin test on ring shear testers. Adv Powder Technol 22:197–202

    Article  Google Scholar 

  74. Verlinden A (2000) Experimental assessment of shear testers for measuring flow properties of bulk solids. PhD-Thesis, Univ. of Bradford, UK

    Google Scholar 

  75. Wittmaier A (2003) Fließverhalten hochdisperser Pulver bei sehr kleinen Spannungen. Dissertation, TU Braunschweig

    Google Scholar 

  76. Schulze D, Wittmaier A (2002) Fließeigenschaften hochdisperser Schüttgüter bei kleinen Verfestigungsspannungen. Chem Ing Tech 74:1144–1148

    Article  Google Scholar 

  77. Schulze D (2004) Ein neues Prinzip zur Messung der Fließeigenschaften von Pulvern und Schüttgütern. Schüttgut 10:369–377

    Google Scholar 

  78. Behres M, Riemenschneider H, Kiesewetter W, Peterlic J (1997) Vergleichsmessungen an einem neuartigem Ringschergerät und dem Jenike-Schergerät. Schüttgut 3:155–160

    Google Scholar 

  79. Schulze D, Heinrici H (2012) How to deal with orientation-dependent wall friction. In: Proceedings 7th Intl. Conf. on Conveying and Handling of Particulate Solids (CHoPS), Friedrichshafen, 10.–13.9.2012, Paper no. 1084

    Google Scholar 

  80. Schulze D, Heinrici H (2013) Was tun bei richtungsabhängiger Wandreibung? Schüttgut 19:94–98

    Google Scholar 

  81. Haaker G (1999) Wall friction measurements on bulk solids. Powder Handl Process 11:19–25

    Google Scholar 

  82. Han T (2011) Comparison of wall friction measurements by Jenike shear tester and ring shear tester. KONA Powder Part J 29:118–124

    Article  Google Scholar 

  83. van den Bergh WJB, Scarlett B (1987) Influence of particle breakage on the wall friction of brittle particulate solids. Powder Technol 49:277–288

    Article  Google Scholar 

  84. Behres M, Klasen CJ, Schulze D (1998) Entwicklung einer Scherzelle zur Messung der Wandreibung von Schüttgütern mit einem Ringschergerät. Schüttgut 4:467–472

    Google Scholar 

  85. Schulze D, Schwedes J, Leonhardt C, Kossert J (1997) Schüttguttechnische Auslegung eines Silos zur Lagerung von 10.000 t Schwefel. Schüttgut 3:299–305

    Google Scholar 

  86. Kwade A, Schulze D (1998) Proper silo design for food products – today strategies for avoiding segregation, degradation and hang-ups. Preprints PARTEC „1st Europ. symp. process technology in pharmaceutical and nutritional sciences“, 10.–12.3.1998, Nürnberg, S 157–166

    Google Scholar 

  87. Ghadiri M, Ning Z, Kenter SJ, Puik E (2000) Attrition of granular solids in a shear cell. Chem Eng Sci 55:5445–5456

    Article  Google Scholar 

  88. Bemrose CR, Bridgwater J (1987) A review of attrition and attrition test methods. Powder Technol 49:97–126

    Article  Google Scholar 

  89. Kalman H, Grant E (2006) Attrition of particles due to shear loads. In: Proc. „5th Intl. Conf. on Conveying and Handling of Particulate Solids (CHoPS)“, Sorrento, Italien, 27.–31. August 2006

    Google Scholar 

  90. Schulze D (1998) Die Charakterisierung von Schüttgütern für Siloauslegung und Fließfähigkeitsuntersuchungen. Aufbereitungstechnik 39:47–57

    Google Scholar 

  91. Runge J, Weißgüttel U (1989) Ein Beitrag zur Beschreibung der Verdichtbarkeit von Schüttgütern bei Normalspannungen bis 30 kPa. Aufbereitungstechnik 3:138–143

    Google Scholar 

  92. Schulze D (1999) Silo stress tool, Programm zum Abschätzen von Spannungen in Silos. Freeware. www.dietmar-schulze.de. Zugegriffen: 23. Sept. 2018

  93. Schulze D (2003) Towards more reliability in powder testing. In: Proc. „4th Intl. Conf. on Conveying and Handling of Particulate Solids (CHoPS)“, Budapest, 27.–30.5.2003, Bd 1, S 5.31–5.36

    Google Scholar 

  94. Schwedes J (1968) Fließverhalten von Schüttgütern in Bunkern. Verlag Chemie, Weinheim

    Google Scholar 

  95. Schwedes J (1971) Scherverhalten leicht verdichteter, kohäsiver Schüttgüter. Dissertation, Universität Karlsruhe

    Google Scholar 

  96. Schulze D, Heinrici H, Zetzener H (2001) The ring shear tester as a valuable tool for silo design and powder characterization. Powder Handl Process 13:19–24

    Google Scholar 

  97. Schulze D (2018) RST-CONTROL 95 – Programm zum Messen von Fließeigenschaften mit den Ringschergeräten RST-01.pc, RST-XS und RST-XS.s

    Google Scholar 

  98. Schulze D (2006) Automatische Bestimmung der optimalen Normalspannungen für Fließorte während der Messung. (Vortrag während des VDI-GVC Fachausschusses „Agglomerations- und Schüttguttechnik“ am 20./21.3.2006 in Reinbek)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Schulze .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, D. (2019). Praktisches Messen von Fließeigenschaften. In: Pulver und Schüttgüter. VDI-Buch(). Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58776-8_4

Download citation

Publish with us

Policies and ethics