Jan Łukasiewicz Life, Work, Legacy

On the Centenary of the Farewell Lecture at Warsaw University During Which Jan Łukasiewicz Introduced Multi-valued Logic and on His 140th Birth Anniversary IN THE YEAR of 100\(^{\text {th}}\) ANNIVERSARY OF REGAINED POLISH INDEPENDENCE
  • Lech PolkowskiEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10810)


Jan Łukasiewicz was one of leading logicians of the XX-th century, universally regarded as the father of many-valued logics which proved to be the language for many paradigms of Computer Science and Artificial Intelligence, inventor of the Polish notation whose dual, the Reverse Polish notation has become implemented in computers and calculators, renowned historian of logic especially of logics of Stoics school and of Aristotle, twice the Rector of Warsaw University in academic years 1922/23 and 1931/32, Minister of Religious Beliefs and Public Enlightenment in the Paderewski cabinet in 1919, earlier in Ministry of Education in provisional Jan Kanty Steczkowski cabinet in 1918, born in Lwów at the time of autonomization of Galicia, student at the Lwów University at the time of its start toward flourishing, in Warsaw between 1915 and 1944, then an exile in Germany, Belgium and finally in Ireland, far from dear Lwów and Poland. He was one of pillars of the world famous Warsaw School of Logic alongside of Warsaw School od Mathematics, Lwów School of Mathematics, Warsaw - Lwów School of Philosophy together with Kazimierz Twardowski, Alfred Tarski, Stanisław Leśniewski, Stefan Banach, Hugo Steinhaus, Juliusz Schauder, Stanisław Mazur, Stanisław Ulam, Wacław Sierpiński, Kazimierz Kuratowski, Stefan Mazurkiewicz, Adolf Lindenbaum, Mordechaj Wajsberg, Bolesław Sobociński and many others. They worked in often difficult conditions, living through two world wars, regional conflicts, many of them lost all their possessions and archives, forced to rebuild their lives anew, often overseas, but always devoted to Poland and its causes



This work is based on the lecture delivered by the author at the 1st Warmian-Masurian Mathematics and Computer Science Colloquium at the Department of Mathematics and Informatics of the University of Warmia and Mazury in Olsztyn in May 2018 which commemorated centenaries of the announcement of many-valued logics by Łukasiewicz and of Poland’s independence. Author thanks Professors Andrzej Skowron and Jan Bazan who took part in the Colloquium and presented lectures on rough set theory.

Thanks go to Professor Andrzej Skowron for his invitation to publish this text in Transactions on Rough Sets and to Professor Andrzej Skowron and Dr Soma Dutta for help with technical preparation of this text for publication.

Reproduced in this text photos come from the Narodowe Archiwum Cyfrowe as well as from commonly accessible internet sources. Author was taking care to attribute sources of photos. Reproduced in this text facsimiles of selected pages of Jan Łukasiewicz works come from the collection ‘Jan Łukasiewicz. Selected Works’, edited by Ludwik Borkowski and published by PWN (Polish Scientific Publishers) and North Holland Publishing Company, Warsaw-Amsterdam, 1970.


  1. 1.
    Lanckorońska, K.: Wspomnienia Wojenne (War Memoirs). Społeczny Instytut Wydawniczy Znak, Kraków (2001)Google Scholar
  2. 2.
    Nestor: The Tale of Bygone years. Cross, S.H., Sherbowitz-Wetzor, O.P. (translators & eds.) The Russian Primary Chronicle, Laurentian Text. The Mediaeval Academy of America, Cambridge (1930 & 1953)Google Scholar
  3. 3.
    Pol, W.: Mohort: rapsod rycerski z podania (A Knight’s Romance Retold from a Legend). Wyd, Akademickie WSSP (2017)Google Scholar
  4. 4.
    (Kazimierz) Twardowski, C.: Zur Lehre vom Inhalt und Gegenstand der Vorstellungen: Eine Psychologische Untersuchung (Classic Reprint). Fb&c Limited (2018)Google Scholar
  5. 5.
    Łukasiewicz, J.: Analiza i konstrukcja pojêcia przyczyny. W: Łukasiewicz, J. (ed.) Z zagadnień logiki i filozofii: pisma wybrane. PWN, Warszawa, pp. 9–62Google Scholar
  6. 6.
    Russell, B.: On the notion of order. Mind 10(37), 30–51 (1901)CrossRefGoogle Scholar
  7. 7.
    Russell, B.: The Principles of Mathematics. London (1903)Google Scholar
  8. 8.
    Łukasiewicz, J.: O zasadzie sprzeczności u Arystotelesa (On the contradiction principle in Aristotle). PWN, Warszawa (1987)Google Scholar
  9. 9.
    Łukasiewicz, J.: Die logischen Grundlagen der Wahrscheinlichkeitsrechnung. Kraków. Również w: Z zagadnień logiki i filozofii: pisma wybrane, str. 76–113 (1913)Google Scholar
  10. 10.
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül. C.R. Soc. Sci. Lett. Varsovie 23, 1–21 (1930)Google Scholar
  11. 11.
    Łukasiewicz, J.: Zur Geschichte der Aussagenlogik. Erkenntnis V(2) (1935)Google Scholar
  12. 12.
    Łukasiewicz, J.: Logika i problem podstaw matematyki (Logic and the problem of foundations of mathematics). W: Logika i Metafizyka: miscellanea. J. Jadacki, edytor, WFiS UW, str. 70–85 (1998)Google Scholar
  13. 13.
    Łukasiewicz, J.: O indukcji jako inwersji dedukcji (Induction as the reverse to deduction). Przegla̧d Filozoficzny 6, 9–24; 138–152 (1903)Google Scholar
  14. 14.
    Łukasiewicz, J.: O logice trójwartościowej (On the 3-valued logic). Ruch Filozoficzny 5, str. 170–171 (1920)Google Scholar
  15. 15.
    Łukasiewicz, J.: Logika dwuwartościowa (On 2-valued logic). Przegla̧d Filozoficzny 13 (1921)Google Scholar
  16. 16.
    Łukasiewicz, J.: Philosophische bemerkungen zu mehrwertige Systemen des Aussagenkalküls. C. R. Soc. Sci. Lett. Varsovie 23, 51–77 (1930)Google Scholar
  17. 17.
    Łukasiewicz, J.: Z historii logiki zdań (On the history of the logic of sentences). Przegla̧d Filozoficzny 37, 417–437 (1934)Google Scholar
  18. 18.
    Łukasiewicz, J.: Bedeutung der logischen Analyse für die Erkenntnis. W: Actes du VIII Congres International de Philosophie, Prague, pp. 75–84 (1936)Google Scholar
  19. 19.
    Łukasiewicz, J.: O sylogistyce Arystotelesa (On the syllogistic of Aristotle). Sprawozdania PAU 44, 220–227 (1939)Google Scholar
  20. 20.
    Łukasiewicz, J.: Der Äquivalenzkalkül. Collectanea logica 1, 145–69 (1939). (This journal was established by B. Sobociński but the outbreak of war prevented publication save one offprint). Published also in L. Borkowski (ed.): J. Łukasiewicz. Selected Works, pp. 250–277 (1970)Google Scholar
  21. 21.
    Łukasiewicz, J.: Die Logik und das Grundlagenproblem. Les entretiens de Zurich sur les fondements et la méthode des sciences mathématiques, December 1938, pp. 82–100. Leemann Freres, Zurich (1941)Google Scholar
  22. 22.
    Łukasiewicz, J.: The shortest axiom of the implicational calculus of propositions. In: Proceedings of the Royal Irish Academy, vol. 52 (A), pp. 25–33 (1948)Google Scholar
  23. 23.
    Łukasiewicz, J.: W sprawie aksjomatyki implikacyjnego rachunku zdań (On the axiomatics of the implicational calculus of sentences). Ann. Soc. Polon. Math. 22, 87–92 (1950)Google Scholar
  24. 24.
    Łukasiewicz, J.: O zasadzie najmniejszej liczby (On the principle of the least number). Rocznik Polskiego Towarzystwa Matematycznego 1948–9. Praca nadesłana na V Kongres Matematyków Polskich (1947)Google Scholar
  25. 25.
    Łukasiewicz, J.: On variable functors of propositional arguments. In: Proceedings of the Royal Irish Academy, vol. 54 (A), pp. 25–35 (1951)Google Scholar
  26. 26.
    Łukasiewicz, J.: On the intuitionistic theory of deduction. In: Indagationes Mathematicae. Koninklijke Nederlandse Academie van Wetenschappen, Proceedings Series A, vol. 14, pp. 201–212 (1952)Google Scholar
  27. 27.
    Łukasiewicz, J.: Arithmetic and modal logic. J. Comput. Syst. 1, 213–219 (1954)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Łukasiewicz, J.: Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic. Clarendon Press (1951). 2nd edn. Oxford University Press (1957 ) (Ed. by, C. Lejewski)Google Scholar
  29. 29.
    McNaughton, R.: A theorem about infinite-valued sentential calculus. J. Symb. Log. 16, 1–13 (1951)CrossRefGoogle Scholar
  30. 30.
    Goguen, J.A.: The logic of inexact concepts. Synthése 19, 325–373 (1968)zbMATHGoogle Scholar
  31. 31.
    Meredith, C.: The dependence of an axiom of Łukasiewicz. TAMS 87, 54 (1958)zbMATHGoogle Scholar
  32. 32.
    Rose, A., Rosser, J.B.: Fragments of many-valued statement calculi. TAMS 87, 1–53 (1958)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Goldberg, H., Leblanc, H., Weaver, G.: A strong completeness theorem for 3-valued logic. Notre Dame J. Form. Log. 15, 325–332 (1974)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Mundici, D.: Satisfiability in many-valued sentential logic is NP-complete. Theor. Comput. Sci. 52, 143–153 (1987)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Hájek, P.: Methamathematics of Fuzzy Logic. Kluwer, Rotterdam (1998)CrossRefGoogle Scholar
  36. 36.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  37. 37.
    Pawlak, Z.: Rough sets. Int. J. Comp. Inf. Sci. 11, 341–356 (1982)CrossRefGoogle Scholar
  38. 38.
    Leśniewski, S.: O podstawach Ogólnej Teoryi Mnogości. Moskwa (1916)Google Scholar
  39. 39.
    Polkowski, L., Skowron, A.: Rough mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 85–94. Springer, Heidelberg (1994). Scholar
  40. 40.
    Polkowski, L., Skowron, A.: A new paradigm for approximate reasoning. Int. J. Approx. Reason. 15(4), 333–365 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations