Skip to main content
  • 1554 Accesses

Abstract

In the current decade, with improvements in technology, the commercial usage of rechargeable lithium-ion batteries (LIBs) has been significantly enhanced. This has not only boosted industrial interest in LIBs but also attracted major research efforts all over the world. Though all components of LIBs are crucial, their quality factors are chiefly linked with their cathode materials. That is why the majority of research is focused on upgrading the quality of cathode material. Depending on the family of materials and its coordination geometry, various families of cathode materials include chalcogenides, layered oxides, silicates, phosphates, and tavorites. In addition, there are conversion electrodes, but they lie outside the scope of this review. These classes of materials are of interest in LIB-focused research. This chapter is devoted to providing an overview of the current status and time evolution of LIBs, with a focus on cathode materials. The primary objective of this overview is to shed light on the subject matter to identify the main problems encountered by LIBs so that solutions may be sought. To present a comprehensive picture of the story, the computational and experimental literature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    General Assembly. Transforming our world: the 2030 agenda for sustainable development. https://sustainabledevelopment.un.org/post2015/transforming our world. Accessed 21 Oct 2015.

  2. 2.

    L. Steve, Renewable energy world, U.N. Secretary-General: renewables can end energy poverty. http://www.renewableenergyworld.com/articles/2011/08/u-n-secretary-generalrenewables-can-end-energy-poverty.html. Accessed 25 Aug 2011.

  3. 3.

    Renewables 2018 Global Status Report. Read more at: http://www.ren21.net/status-of-renewables/global-status-report/

References

  1. J. Wu et al., Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 46(19), 5975–6023 (2017)

    Article  CAS  Google Scholar 

  2. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation – approaching the limits of, and going beyond, lithium-ion batteries. Energy Environ. Sci. 5(7), 7854–7863 (2012)

    Article  CAS  Google Scholar 

  3. N. Nitta et al., Li-ion battery materials: present and future. Mater. Today 18(5), 252–264 (2015)

    Article  CAS  Google Scholar 

  4. N. Williard et al., Lessons learned from the 787 Dreamliner issue on lithium-ion battery reliability. Energies 6(9), 4682–4695 (2013)

    Article  Google Scholar 

  5. R. Hausbrand et al., Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: methodology, insights and novel approaches. Mater. Sci. Eng. B 192, 3–25 (2015)

    Article  CAS  Google Scholar 

  6. S. Kumar, N. Kumar, S. Vivekadhish, Millennium development goals (MDGS) to sustainable development goals (SDGS): Addressing unfinished agenda and strengthening sustainable development and partnership. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine, 41(1), 1 (2016).

    Google Scholar 

  7. S. Goriparti et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421–443 (2014)

    Article  CAS  Google Scholar 

  8. Y. Wang, G. Cao, Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18(12), 2787–2804 (2006)

    Article  CAS  Google Scholar 

  9. M. Winter et al., Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10(10), 725–763 (1998)

    Article  CAS  Google Scholar 

  10. D. Murphy, Materials for Advanced Batteries, vol 2 (Springer Science & Business Media, New York, 2013)

    Google Scholar 

  11. D. Chen et al., Double transition-metal chalcogenide as a high-performance lithium-ion battery anode material. Ind. Eng. Chem. Res. 53(46), 17901–17908 (2014)

    Article  CAS  Google Scholar 

  12. Y. Jung, Y. Zhou, J.J. Cha, Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3(4), 452–463 (2016)

    Article  CAS  Google Scholar 

  13. G. Guo et al., Molybdenum disulfide synthesized by the hydrothermal method as an anode for lithium rechargeable batteries. J. Mater. Sci. 40(9–10), 2557–2559 (2005)

    Article  CAS  Google Scholar 

  14. J. Xiao et al., Exfoliated MoS2 nanocomposite as an anode material for lithium-ion batteries. Chem. Mater. 22(16), 4522–4524 (2010)

    Article  CAS  Google Scholar 

  15. K. Chang, W. Chen, L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium-ion batteries. ACS Nano 5(6), 4720–4728 (2011)

    Article  CAS  Google Scholar 

  16. K. Chang, W. Chen, In situ synthesis of MoS2/graphene nanosheet composites with an extraordinarily high electrochemical performance for lithium ion batteries. Chem. Commun. 47(14), 4252–4254 (2011)

    Article  CAS  Google Scholar 

  17. H. Hwang, H. Kim, J. Cho, MoS2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11(11), 4826–4830 (2011)

    Article  CAS  Google Scholar 

  18. R. Bhandavat, L. David, G. Singh, Synthesis of surface-functionalized WS2 nanosheets and performance as Li-ion battery anodes. J. Phys. Chem. Lett. 3(11), 1523–1530 (2012)

    Article  CAS  Google Scholar 

  19. B. Luo et al., Two-dimensional graphene–SnS2 hybrids with superior rate capability for lithium-ion storage. Energy Environ. Sci. 5(1), 5226–5230 (2012)

    Article  CAS  Google Scholar 

  20. Y. Gong et al., Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 25(29), 3979–3984 (2013)

    Article  CAS  Google Scholar 

  21. M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)

    Article  CAS  Google Scholar 

  22. S. Meyer et al., Properties of intercalated 2H-NbSe2, 4Hb-TaS2, and 1T-TaS2. J. Chem. Phys. 62(11), 4411–4419 (1975)

    Article  CAS  Google Scholar 

  23. R. Elazari et al., Li-ion cells comprising lithiated columnar silicon film anodes, TiS2 cathodes and fluoroethylene carbonate (FEC) as a critically important component. J. Electrochem. Soc. 159(9), A1440–A1445 (2012)

    Article  CAS  Google Scholar 

  24. T. Bredow, P. Heitjans, M. Wilkening, Electric field gradient calculations for LixTiS2 and comparison with 7Li NMR results. Phys. Rev. B 70(11), 115111 (2004)

    Article  CAS  Google Scholar 

  25. T.A. Yersak et al., Ambient temperature and pressure mechanochemical preparation of nano-LiTiS2. ECS Electrochem. Lett. 1(1), A21–A23 (2012)

    Article  CAS  Google Scholar 

  26. J.E. Trevey, C.R. Stoldt, S.-H. Lee, High power nanocomposite TiS2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158(12), A1282–A1289 (2011)

    Article  CAS  Google Scholar 

  27. B.R. Shin et al., Interfacial architecture for extra Li+ storage in all-solid-state lithium batteries. Sci. Rep. 4, 5572 (2014)

    Article  CAS  Google Scholar 

  28. B.R. Shin et al., Comparative study of TiS2/Li-In all-solid-state lithium batteries using glass-ceramic Li3PS4 and Li10GeP2S12 solid electrolytes. Electrochim. Acta 146, 395–402 (2014)

    Article  CAS  Google Scholar 

  29. J. Fischer, H. Kim, Elastic effects in intercalation compounds: comparison of lithium in graphite and TiS2. Phys. Rev. B 35(7), 3295 (1987)

    Article  CAS  Google Scholar 

  30. D. Clerc, R. Poshusta, A. Hess, Periodic Hartree–Fock study of LixTiS2, 0 ≤ x ≤ 1: the structural, elastic, and electronic effects of lithium intercalation in TiS2. J. Phys. Chem. A 101(47), 8926–8931 (1997)

    Article  CAS  Google Scholar 

  31. F. Mendizabal, R. Contreras, A. Aizman, Molecular modeling of lithium intercalation in 1T-TiS2. J. Phys. Condens. Matter 9(14), 3011 (1997)

    Article  CAS  Google Scholar 

  32. J. Dahn, D.C. Dahn, R. Haering, Elastic energy and staging in intercalation compounds. Solid State Commun. 42(3), 179–183 (1982)

    Article  CAS  Google Scholar 

  33. J. Wang, Model for lithium intercalation into TiS2. Solid State Ionics 40, 548–552 (1990)

    Article  Google Scholar 

  34. C. Umrigar et al., Band structure, intercalation, and interlayer interactions of transition-metal dichalcogenides: TiS2 and LiTiS2. Phys. Rev. B 26(9), 4935 (1982)

    Article  CAS  Google Scholar 

  35. K. Kang et al., Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311(5763), 977–980 (2006)

    Article  CAS  Google Scholar 

  36. N. Kuganathan, P. Iyngaran, A. Chroneos, Lithium diffusion in Li5FeO4. Sci. Rep. 8(1), 5832 (2018)

    Article  CAS  Google Scholar 

  37. F. Kong et al., Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries. J. Mater. Chem. A 3(16), 8489–8500 (2015)

    Article  CAS  Google Scholar 

  38. P. Xiao et al., Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C 116(44), 23201–23204 (2012)

    Article  CAS  Google Scholar 

  39. Z. Deng, A. Manthiram, Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J. Phys. Chem. C 115(14), 7097–7103 (2011)

    Article  CAS  Google Scholar 

  40. J. Wandt et al., Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. Mater. Today 21(8), 825–833 (2018)

    Article  CAS  Google Scholar 

  41. N. Yabuuchi, Y. Makimura, T. Ohzuku, Solid-state chemistry, and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries III. Rechargeable capacity and cyclability. J. Electrochem. Soc. 154(4), A314–A321 (2007)

    Article  CAS  Google Scholar 

  42. I. Buchberger et al., Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. J. Electrochem. Soc. 162(14), A2737–A2746 (2015)

    Article  CAS  Google Scholar 

  43. R. Jung et al., Chemical versus electrochemical electrolyte oxidation on NMC111, NMC622, NMC811, LNMO, and conductive carbon. J. Phys. Chem. Lett. 8(19), 4820–4825 (2017)

    Article  CAS  Google Scholar 

  44. J. Wandt et al., Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy. J. Mater. Chem. A 4(47), 18300–18305 (2016)

    Article  CAS  Google Scholar 

  45. D.R. Gallus et al., The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material. Electrochim. Acta 134, 393–398 (2014)

    Article  CAS  Google Scholar 

  46. J.A. Gilbert, I.A. Shkrob, D.P. Abraham, Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in lithium-ion full cells. J. Electrochem. Soc. 164(2), A389–A399 (2017)

    Article  CAS  Google Scholar 

  47. S.K. Jung et al., Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium-ion batteries. Adv. Energy Mater. 4(1) (2014). https://doi.org/10.1002/aenm.201300787

    Article  CAS  Google Scholar 

  48. R. Petibon et al., Effect of LiPF6 concentration in Li[Ni0.4Mn0.4Co0.2]O2/graphite pouch cells operated at 4.5V. J. Power Sources 300, 419–429 (2015)

    Article  CAS  Google Scholar 

  49. K. Nelson et al., Effects of upper cutoff potential on LaPO4-coated and uncoated Li[Ni0.42Mn0.42Co0.16]O2/graphite pouch cells. J. Electrochem. Soc. 163(2), A272–A280 (2016)

    Article  CAS  Google Scholar 

  50. Y. Koyama et al., Defect chemistry in layered LiMO2 (M = Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem. Mater. 24(20), 3886–3894 (2012)

    Article  CAS  Google Scholar 

  51. O. García-Moreno, O. García-Moreno, M. Alvarez-Vega, F. García-Alvarado, J. García-Jaca, J.M. Gallardo-Amores, M.L. Sanjuán, U. Amador, Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: a new high-pressure form of LiMPO4 (M = Fe and Ni). Chem. Mater. 13, 1570 (2001)

    Article  CAS  Google Scholar 

  52. M.E. Arroyo-de Dompablo, U. Amador, A computational investigation of the electrochemical properties of spinel-like LiCoAsO4 as a positive electrode for lithium-ion batteries. Solid State Sci. 8(8), 916–921 (2006)

    Article  CAS  Google Scholar 

  53. T. Zhang et al., Understanding electrode materials of rechargeable lithium batteries via DFT calculations. Prog. Nat. Sci. Mater. Int. 23(3), 256–272 (2013)

    Article  CAS  Google Scholar 

  54. A. Karim, S. Fosse, K.A. Persson, Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations. Phys. Rev. B 87(7), 075322 (2013)

    Article  CAS  Google Scholar 

  55. K. Matsuda, I. Taniguchi, Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis. J. Power Sources 132(1–2), 156–160 (2004)

    Article  CAS  Google Scholar 

  56. I. Taniguchi et al., Particle morphology and electrochemical performances of spinel LiMn2O4 powders synthesized using ultrasonic spray pyrolysis method. Solid State Ionics 146(3–4), 239–247 (2002)

    Article  CAS  Google Scholar 

  57. J.-S. Kim et al., A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. Nano Lett. 12(12), 6358–6365 (2012)

    Article  CAS  Google Scholar 

  58. T. Takada et al., Structure and electrochemical characterization of Li1+xMn2−xO4 spinels for rechargeable lithium batteries. J. Power Sources 81, 505–509 (1999)

    Article  Google Scholar 

  59. M. Anicete-Santos et al., Intercalation processes and diffusion paths of lithium ions in spinel-type structured Li1+xTi2O4: density functional theory study. Phys. Rev. B 77(8), 085112 (2008)

    Article  CAS  Google Scholar 

  60. J. Bhattacharya, A. Van der Ven, Phase stability and nondilute Li diffusion in spinel Li1+xTi2O4. Phys. Rev. B 81(10), 104304 (2010)

    Article  CAS  Google Scholar 

  61. M.S. Islam et al., Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17(20), 5085–5092 (2005)

    Article  CAS  Google Scholar 

  62. A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144(4), 1188–1194 (1997)

    Article  CAS  Google Scholar 

  63. G.K.P. Dathar et al., Calculations of Li-ion diffusion in olivine phosphates. Chem. Mater. 23(17), 4032–4037 (2011)

    Article  CAS  Google Scholar 

  64. S. Novikova, A. Yaroslavtsev, Cathode materials based on olivine lithium iron phosphates for lithium-ion batteries. Rev. Adv. Mater. Sci. 49(2), 129–139 (2017)

    CAS  Google Scholar 

  65. S.-Y. Chung, J.T. Blocking, Y.-M. Chiang, Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1(2), 123 (2002)

    Article  CAS  Google Scholar 

  66. N. Terada et al., Development of lithium batteries for energy storage and EV applications. J. Power Sources 100(1–2), 80–92 (2001)

    Article  CAS  Google Scholar 

  67. P.P. Prosini et al., Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1–2), 45–51 (2002)

    Article  CAS  Google Scholar 

  68. H. Liu et al., Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J. Power Sources 159(1), 717–720 (2006)

    Article  CAS  Google Scholar 

  69. K. Tang et al., Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS. Electrochim. Acta 56(13), 4869–4875 (2011)

    Article  CAS  Google Scholar 

  70. S. Zhang et al., Li-ion diffusivity and electrochemical properties of FePO4 nanoparticles acted directly as cathode materials in lithium ion rechargeable batteries. Electrochim. Acta 88, 287–293 (2013)

    Article  CAS  Google Scholar 

  71. J. Yang et al., Li2FeSiO4 nanorods bonded with graphene for high-performance batteries. J. Mater. Chem. A 3(18), 9601–9608 (2015)

    Article  CAS  Google Scholar 

  72. J. Yang et al., Tuning structural stability and lithium-storage properties by d-orbital hybridization substitution in full tetrahedron Li2FeSiO4 nanocrystal. Nano Energy 20, 117–125 (2016)

    Article  CAS  Google Scholar 

  73. J. Yang et al., Graphene activated 3D-hierarchical flower-like Li2FeSiO4 for high-performance lithium-ion batteries. J. Mater. Chem. A 3(32), 16567–16573 (2015)

    Article  CAS  Google Scholar 

  74. R. Gummow, Y. He, Recent progress in the development of Li2MnSiO4 cathode materials. J. Power Sources 253, 315–331 (2014)

    Article  CAS  Google Scholar 

  75. M.S. Islam et al., Silicate cathodes for lithium batteries: alternatives to phosphates? J. Mater. Chem. 21(27), 9811–9818 (2011)

    Article  CAS  Google Scholar 

  76. V. Aravindan et al., Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. J. Mater. Chem. 20(35), 7340–7343 (2010)

    Article  CAS  Google Scholar 

  77. Q. Cheng et al., Modification of Li2MnSiO4 cathode materials for lithium-ion batteries: a review. J. Mater. Chem. A 5(22), 10772–10797 (2017)

    Article  CAS  Google Scholar 

  78. R. Dominko, Li2MSiO4 (M = Fe and/or Mn) cathode materials. J. Power Sources 184(2), 462–468 (2008)

    Article  CAS  Google Scholar 

  79. D. Rangappa et al., Ultrathin nanosheets of Li2MSiO4 (M = Fe, Mn) as a high-capacity Li-ion battery electrode. Nano Lett. 12(3), 1146–1151 (2012)

    Article  CAS  Google Scholar 

  80. D. Sun et al., In-situ synthesis of carbon-coated Li2MnSiO4 nanoparticles with high rate performance. J. Power Sources 242, 865–871 (2013)

    Article  CAS  Google Scholar 

  81. Q. Zhang et al., Synthesis and characterization of pristine Li2MnSiO4 and Li2MnSiO4/C cathode materials for lithium-ion batteries. Ionics 18(5), 487–494 (2012)

    Article  CAS  Google Scholar 

  82. C. Hwang et al., Fast ultrasound-assisted synthesis of Li2MnSiO4 nanoparticles for a lithium-ion battery. J. Power Sources 294, 522–529 (2015)

    Article  CAS  Google Scholar 

  83. M. Świętosławski et al., Nanocomposite C/Li2MnSiO4 cathode material for lithium-ion batteries. J. Power Sources 244, 510–514 (2013)

    Article  CAS  Google Scholar 

  84. Y. Dong et al., Synthesis of La-doped Li2MnSiO4 nano-particle with high-capacity via the polyol-assisted hydrothermal method. Electrochim. Acta 166, 40–46 (2015)

    Article  CAS  Google Scholar 

  85. S. Zhang et al., Li2+xMn1−xPxSi1−xO4/C as novel cathode materials for lithium-ion batteries. Electrochim. Acta 107, 406–412 (2013)

    Article  CAS  Google Scholar 

  86. M. Kim, S. Lee, B. Kang, High energy density polyanion electrode material: LiVPO4O1–xFx (x ≈ 0.25) with tavorite structure. Chem. Mater. 29(11), 4690–4699 (2017)

    Article  CAS  Google Scholar 

  87. J.-M. Ateba Mba et al., Synthesis and crystallographic study of homotypic LiVPO4F and LiVPO4O. Chem. Mater. 24(6), 1223–1234 (2012)

    Article  CAS  Google Scholar 

  88. M. Ati et al., Synthesis, structural, and transport properties of novel be hydrated fluorosulphates NaMSO4F·2H2O (M = Fe, Co, and Ni). Chem. Mater. 22(13), 4062–4068 (2010)

    Article  CAS  Google Scholar 

  89. P. Barpanda et al., A 3.90V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 10(10), 772 (2011)

    Article  CAS  Google Scholar 

  90. J. Dong et al., Triplite LiFeSO4F as cathode material for Li-ion batteries. J. Power Sources 244, 716–720 (2013)

    Article  CAS  Google Scholar 

  91. M. Kim, Y. Jung, B. Kang, The high electrochemical performance of 3.9V LiFeSO4F directly synthesized by a scalable solid-state reaction within 1 h. J. Mater. Chem. A 3(14), 7583–7590 (2015)

    Article  CAS  Google Scholar 

  92. R. Tripathi et al., Ultra-rapid microwave synthesis of triplite LiFeSO4F. J. Mater. Chem. A 1(9), 2990–2994 (2013)

    Article  CAS  Google Scholar 

  93. R. Gover et al., LiVPO4F: a new active material for safe lithium-ion batteries. Solid State Ionics 177(26–32), 2635–2638 (2006)

    Article  CAS  Google Scholar 

  94. J. Barker et al., Structural and electrochemical properties of lithium vanadium fluorophosphate, LiVPO4F. J. Power Sources 146(1–2), 516–520 (2005)

    Article  CAS  Google Scholar 

  95. M. Kim, S. Lee, B. Kang, Fast-rate capable electrode material with higher energy density than LiFePO4: 4.2V LiVPO4F synthesized by scalable single-step solid-state reaction. Adv. Sci. 3(3), 1500366 (2016)

    Article  CAS  Google Scholar 

  96. K.L. Harrison, A. Manthiram, Microwave-assisted solvothermal synthesis and characterization of various polymorphs of LiVOPO4. Chem. Mater. 25(9), 1751–1760 (2013)

    Article  CAS  Google Scholar 

  97. L.W. Wangoh et al., Uniform second Li-ion intercalation in solid state ε-LiVOPO4. Appl. Phys. Lett. 109(5), 053904 (2016)

    Article  CAS  Google Scholar 

  98. B. Wen et al., Molybdenum substituted vanadyl phosphate ε-VOPO4 with enhanced two-electron transfer reversibility and kinetics for lithium-ion batteries. Chem. Mater. 28(9), 3159–3170 (2016)

    Article  CAS  Google Scholar 

  99. K.L. Harrison et al., Chemical and electrochemical lithiation of LiVOPO4 cathodes for lithium-ion batteries. Chem. Mater. 26(12), 3849–3861 (2014)

    Article  CAS  Google Scholar 

  100. L. Grande et al., The lithium/air battery: still an emerging system or a practical reality? Adv. Mater. 27(5), 784–800 (2015)

    Article  CAS  Google Scholar 

  101. J. Yuan, J.-S. Yu, B. Sundén, Review of mechanisms and continuum models of multi-phase transport phenomena in porous structures of non-aqueous Li-Air batteries. J. Power Sources 278, 352–369 (2015)

    Article  CAS  Google Scholar 

  102. F. Wu, G. Yushin, Conversion cathodes for rechargeable lithium and lithium-ion batteries. Energy Environ. Sci. 10(2), 435–459 (2016)

    Article  CAS  Google Scholar 

  103. F. Wang et al., Conversion reaction mechanisms in lithium-ion batteries: a study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 133(46), 18828–18836 (2011)

    Article  CAS  Google Scholar 

  104. H. Braunschweig et al., Highly strained heterocycles constructed from boron–boron multiple bonds and heavy chalcogens. Angew. Chem. Int. Ed. 55(18), 5606–5609 (2016)

    Article  CAS  Google Scholar 

  105. H.F. Franzen, Structure, and bonding in metal-rich compounds: pnictides, chalcides, and halides. Prog. Solid State Chem. 12(1), 1–39 (1978)

    Article  CAS  Google Scholar 

  106. T. Li et al., Transition-metal chlorides as conversion cathode materials for Li-ion batteries. Electrochim. Acta 68, 202–205 (2012)

    Article  CAS  Google Scholar 

  107. P.G. Bruce, B. Scrosati, J.M. Tarascon, Nanomaterialien für wiederaufladbare lithium batteries. Angew. Chem. 120(16), 2972–2989 (2008)

    Article  Google Scholar 

  108. L. Li, F. Meng, S. Jin, High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism. Nano Lett. 12(11), 6030–6037 (2012)

    Article  CAS  Google Scholar 

  109. X. Hua et al., Comprehensive study of the CuF2 conversion reaction mechanism in a lithium-ion battery. J. Phys. Chem. C 118(28), 15169–15184 (2014)

    Article  CAS  Google Scholar 

  110. R.E. Doe et al., First-principles investigation of the Li−Fe−F phase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides with lithium. Chem. Mater. 20(16), 5274–5283 (2008)

    Article  CAS  Google Scholar 

  111. Q. Qu et al., Strong surface-bound sulfur in conductive MoO2 matrix for enhancing Li–S battery performance. Adv. Mater. Interfaces 2(7), 1500048 (2015)

    Article  CAS  Google Scholar 

  112. L. Li et al., Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J. Am. Chem. Soc. 138(8), 2838–2848 (2016)

    Article  CAS  Google Scholar 

  113. T. Li et al., Reversible three-electron redox behaviors of FeF3 nanocrystals as high-capacity cathode-active materials for Li-ion batteries. J. Phys. Chem. C 114(7), 3190–3195 (2010)

    Article  CAS  Google Scholar 

  114. M. Jaishankar et al., Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 7(2), 60–72 (2014)

    Article  CAS  Google Scholar 

  115. M. Ebner et al., Visualization and quantification of electrochemical and mechanical degradation in Li-ion batteries. Science 342(6159), 716–720 (2013)

    Article  CAS  Google Scholar 

  116. T. Evans et al., Ionic liquid enabled FeS2 for high-energy-density lithium-ion batteries. Adv. Mater. 26(43), 7386–7392 (2014)

    Article  CAS  Google Scholar 

  117. X. Wang et al., Flexible energy-storage devices: design consideration and recent progress. Adv. Mater. 26(28), 4763–4782 (2014)

    Article  CAS  Google Scholar 

  118. M.-R. Gao et al., Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013)

    Article  CAS  Google Scholar 

  119. S.K. Martha et al., On the thermal stability of olivine cathode materials for lithium-ion batteries. J. Electrochem. Soc. 158(10), A1115–A1122 (2011)

    Article  CAS  Google Scholar 

  120. Z. Li et al., Confined selenium within porous carbon nanospheres as a cathode for advanced Li–Se batteries. Nano Energy 9, 229–236 (2014)

    Article  CAS  Google Scholar 

  121. L. Zeng et al., A flexible porous carbon nanofibers-selenium cathode with superior electrochemical performance for both Li–Se and Na–Se batteries. Adv. Energy Mater. 5(4), 1401377 (2015)

    Article  CAS  Google Scholar 

  122. X. Guo et al., Lithium storage in carbon-coated SnO2 by conversion reaction. J. Power Sources 226, 75–81 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The work has been done by the grant of HEC Pakistan under project 6509/Punjab/NRPU. All the studies and related experiments has been done in the DFT lab department of Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Majid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashraf, I.U., Majid, A. (2019). Cathode Material in Lithium-Ion Battery. In: Zhen, Q., Bashir, S., Liu, J. (eds) Nanostructured Materials for Next-Generation Energy Storage and Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58675-4_7

Download citation

Publish with us

Policies and ethics