Advertisement

Functionalized Ionic Liquid-Based Electrolytes for Li-Ion Batteries

  • Aarti Tiwari
  • Tharamani C. NagaiahEmail author
  • Debaprasad MandalEmail author
  • Santosh N. Chavan
Chapter

Abstract

Ionic liquids (ILs) are molten salts with an immense potential as an electrolyte in battery which fulfills the two most demanding aspects, negligible volatility, and non-flammability along with low melting temperature affecting their wide range applicability. Along with these aspects, ILs need suitable functionalization of the chosen cationic and/or anionic component for high stability within the working potential of the battery and suitable ionic conductivity. The chemistry of the substituent groups and the interaction between this cation and anion of an ionic liquid are the key to fine-tune the electrolyte. The present chapter deals with the functionalization of alkoxy (R–O–R) and siloxy (Si–O–Si) groups as substituents over the imidazolium cation. This modified cation was associated with an electronically diffused anion, N, N- bis(trifluoromethane)sulfonimide (TFSI, CF3SO2)2NH) to control the extent of cluster formation prevalent in the presence of high concentration of lithium-ion (Li+, 1 mol/kg solvent). This cluster formation regulates the viscosity which in turn controls the obtainable ionic conductivity essential for good charge-discharge characteristics. Another issue of high-energy electrodes reacting slowly with the ionic liquid electrolyte and requiring a long time for a stable solid electrolyte interface formation was addressed by using an organic additive, namely, propylene carbonate (PC, C4H6O3). The concept of a functionalized electrolyte mixture comprising of an ionic liquid, organic additive, and Li-ion source is pursued in depth, and its impact over the various parameters of the electrolyte was analyzed. The probable impact of these ionic liquid mixtures in the battery electrolyte was assessed both physical and electrochemical characterization. The functional applicability was finally tested by performing charge-discharge cycling in a compiled battery consisting of a graphite (C) anode and lithium cobalt(III) oxide (LiCoO2) cathode separated by the ionic liquid mixture soaked separator.

Keywords

Li-ion battery Battery electrolyte Functionalized ionic liquid Battery testing 

Notes

Acknowledgments

This research is supported by the Department of Atomic Energy (DAE), India (2013/37C/57/BRNS). Dr. Tharamani C. Nagaiah thanks the Department of Science and Technology (DST) for the Ramanujan Fellowship (SR/S2/RJN-26/2012). Aarti Tiwari thanks IIT Ropar for Fellowship.

The authors thank the editors in allowing us to extend our previously published work [7] with new data from [8] based on our research and other cited works in the field.

References

  1. 1.
    M. Andrea, R. Greta, G. Matteo, R. Enzio, F. Giovanni, R. Guido, M. Valentina, The Local structure of ionic liquids: Cation–cation NOE interactions and internuclear distances in neat [BMIM][BF4] and [BDMIM][BF4]. Angew. Chem. Int. Ed. 45(7), 1123–1126 (2006).  https://doi.org/10.1002/anie.200503745CrossRefGoogle Scholar
  2. 2.
    M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Armand, J.M. Tarascon, Building better batteries. Nature 451(7179), 652–657 (2008)CrossRefGoogle Scholar
  4. 4.
    M.B. Armand, F.E.K.C.E. Moursli, Bis perhalogenoacyl -or sulfonyl-imides of alkali metals, their solid solutions with plastic materials and their use to the constitution of conductor elements for electrochemical generators: Google Patents (1985)Google Scholar
  5. 5.
    D. Baril, C. Michot, M. Armand, Electrochemistry of liquids vs. solids: Polymer electrolytes. Solid State Ionics 94(1), 35–47 (1997).  https://doi.org/10.1016/S0167-2738(96)00614-5CrossRefGoogle Scholar
  6. 6.
    F. Capuano, F. Croce, B. Scrosati, Composite polymer electrolytes. J. Electrochem. Soc. 138(7), 1918–1922 (1991).  https://doi.org/10.1149/1.2085900CrossRefGoogle Scholar
  7. 7.
    S.N. Chavan, D. Mandal, The combined effect of ether and siloxane substituents on imidazolium ionic liquids. RSC Adv. 5(80), 64821–64831 (2015).  https://doi.org/10.1039/C5RA07466ECrossRefGoogle Scholar
  8. 8.
    S.N. Chavan, A. Tiwari, T.C. Nagaiah, D. Mandal, Ether and siloxane functionalized ionic liquids and their mixtures as an electrolyte for lithium-ion batteries. Phys. Chem. Chem. Phys. 18(24), 16116–16126 (2016).  https://doi.org/10.1039/C6CP01519KCrossRefGoogle Scholar
  9. 9.
    F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692), 456–458 (1998)CrossRefGoogle Scholar
  10. 10.
    K. Dahl, G.M. Sando, D.M. Fox, T.E. Sutto, J.C. Owrutsky, Vibrational spectroscopy and dynamics of small anions in ionic liquid solutions. J. Chem. Phys. 123(8), 084504 (2005).  https://doi.org/10.1063/1.2000229CrossRefGoogle Scholar
  11. 11.
    Y. Ein-Eli, S.F. McDevitt, D. Aurbach, B. Markovsky, A. Schechter, Methyl propyl carbonate: A promising single solvent for Li-Ion battery electrolytes. J. Electrochem. Soc. 144(7), L180–L184 (1997).  https://doi.org/10.1149/1.1837792CrossRefGoogle Scholar
  12. 12.
    T. Endo, M. Imanari, H. Seki, K. Nishikawa, Effects of methylation at position 2 of cation ring on rotational dynamics of imidazolium-based ionic liquids investigated by NMR Spectroscopy: [C4mim]Br vs [C4C1mim]Br. Chem. A Eur. J. 115(14), 2999–3005 (2011).  https://doi.org/10.1021/jp200635hCrossRefGoogle Scholar
  13. 13.
    T. Endo, T. Kato, K. Nishikawa, Effects of methylation at the 2 position of the cation ring on phase behaviors and conformational structures of imidazolium-based ionic liquids. J. Phys. Chem. B 114(28), 9201–9208 (2010).  https://doi.org/10.1021/jp104123vCrossRefGoogle Scholar
  14. 14.
    V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011).  https://doi.org/10.1039/C1EE01598BCrossRefGoogle Scholar
  15. 15.
    S. Ferrari, E. Quartarone, C. Tomasi, D. Ravelli, S. Protti, M. Fagnoni, P. Mustarelli, Alkoxy substituted imidazolium-based ionic liquids as electrolytes for lithium batteries. J. Power Sources 235, 142–147 (2013).  https://doi.org/10.1016/j.jpowsour.2013.01.149CrossRefGoogle Scholar
  16. 16.
    T. Frömling, M. Kunze, M. Schönhoff, J. Sundermeyer, B. Roling, Enhanced lithium transference numbers in ionic liquid electrolytes. J. Phys. Chem. B 112(41), 12985–12990 (2008).  https://doi.org/10.1021/jp804097jCrossRefGoogle Scholar
  17. 17.
    Z. Gadjourova, Y.G. Andreev, D.P. Tunstall, P.G. Bruce, Ionic conductivity in crystalline polymer electrolytes. Nature 412(6846), 520–523 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Galiński, A. Lewandowski, I. Stępniak, Ionic liquids as electrolytes. Electrochim. Acta 51(26), 5567–5580 (2006).  https://doi.org/10.1016/j.electacta.2006.03.016CrossRefGoogle Scholar
  19. 19.
    B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta 49(26), 4583–4588 (2004).  https://doi.org/10.1016/j.electacta.2004.04.041CrossRefGoogle Scholar
  20. 20.
    R. Giernoth, Task-specific Ionic Liquids. Angew. Chem. Int. Ed. 49(16), 2834–2839 (2010).  https://doi.org/10.1002/anie.200905981CrossRefGoogle Scholar
  21. 21.
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li Batteries. Chem. Mater. 22(3), 587–603 (2010).  https://doi.org/10.1021/cm901452zCrossRefGoogle Scholar
  22. 22.
    J.B. Goodenough, K.-S. Park, The Li-Ion rechargeable battery: A perspective. J. Am. Chem. Soc. 135(4), 1167–1176 (2013).  https://doi.org/10.1021/ja3091438CrossRefGoogle Scholar
  23. 23.
    A. Guerfi, M. Dontigny, P. Charest, M. Petitclerc, M. Lagacé, A. Vijh, K. Zaghib, Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and an organic electrolyte with enhanced safety and electrochemical performance. J. Power Sources 195(3), 845–852 (2010).  https://doi.org/10.1016/j.jpowsour.2009.08.056CrossRefGoogle Scholar
  24. 24.
    H.-B. Han, K. Liu, S.-W. Feng, S.-S. Zhou, W.-F. Feng, J. Nie, et al., Ionic liquid electrolytes based on multi-methoxyethyl substituted ammoniums and perfluorinated sulfonimides: Preparation, characterization, and properties. Electrochim. Acta 55(23), 7134–7144 (2010).  https://doi.org/10.1016/j.electacta.2010.06.063CrossRefGoogle Scholar
  25. 25.
    S.T. Handy, M. Okello, The 2-Position of Imidazolium Ionic Liquids: Substitution and Exchange. J. Org. Chem. 70(5), 1915–1918 (2005).  https://doi.org/10.1021/jo0480850CrossRefGoogle Scholar
  26. 26.
    P. Hapiot, C. Lagrost, Electrochemical reactivity in room-temperature ionic liquids. Chem. Rev. 108(7), 2238–2264 (2008).  https://doi.org/10.1021/cr0680686CrossRefGoogle Scholar
  27. 27.
    K. Hayamizu, Y. Aihara, S. Arai, W.S. Price, Self-diffusion coefficients of lithium, anion, polymer, and solvent in polymer gel electrolytes measured using 7Li, 19F, and 1H pulsed-gradient spin-echo NMR. Electrochim. Acta 45(8), 1313–1319 (2000).  https://doi.org/10.1016/S0013-4686(99)00338-2CrossRefGoogle Scholar
  28. 28.
    P.A. Hunt, Why Does a Reduction in Hydrogen Bonding Lead to an Increase in Viscosity for the 1-Butyl-2,3-dimethyl-imidazolium-Based Ionic Liquids? J. Phys. Chem. B 111(18), 4844–4853 (2007).  https://doi.org/10.1021/jp067182pCrossRefGoogle Scholar
  29. 29.
    M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power Sources 162(1), 658–662 (2006).  https://doi.org/10.1016/j.jpowsour.2006.02.077CrossRefGoogle Scholar
  30. 30.
    Y. Jin, S. Fang, M. Chai, L. Yang, S.-I. Hirano, Ether-Functionalized Trialkylimidazolium Ionic Liquids: Synthesis, Characterization, and Properties. Ind. Eng. Chem. Res. 51(34), 11011–11020 (2012).  https://doi.org/10.1021/ie300849uCrossRefGoogle Scholar
  31. 31.
    Y. Jin, S. Fang, L. Yang, S.-I. Hirano, K. Tachibana, Functionalized ionic liquids based on guanidinium cations with two ether groups as new electrolytes for a lithium battery. J. Power Sources 196(24), 10658–10666 (2011).  https://doi.org/10.1016/j.jpowsour.2011.08.008CrossRefGoogle Scholar
  32. 32.
    J. Kalhoff, D. Bresser, M. Bolloli, F. Alloin, J.-Y. Sanchez, S. Passerini, Enabling LiTFSI-based electrolytes for Safer Lithium-Ion Batteries by Using Linear Fluorinated Carbonates as (Co)Solvent. ChemSusChem 7(10), 2939–2946 (2014).  https://doi.org/10.1002/cssc.201402502CrossRefGoogle Scholar
  33. 33.
    F. Kenta, M. Takushi, T. Toshiyuki, Y. Toshio, U. Yasuhiro, I. Shin-ich, Effect of Methylation at the C2 Position of Imidazolium on the Structure of Ionic Liquids Revealed by Large Angle X-ray Scattering Experiments and MD Simulations. Chem. Lett. 38(4), 340–341 (2009).  https://doi.org/10.1246/cl.2009.340CrossRefGoogle Scholar
  34. 34.
    V.R. Koch, C. Nanjundiah, G.B. Appetecchi, B. Scrosati, The interfacial stability of Li with Two New Solvent-Free Ionic Liquids: 1,2-Dimethyl-3-propylimidazolium Imide and Methide. J. Electrochem. Soc. 142(7), L116–L118 (1995).  https://doi.org/10.1149/1.2044332CrossRefGoogle Scholar
  35. 35.
    F. Koichi, W. Alexander, L. Ralf, Strong, localized, and directional hydrogen bonds fluidize ionic liquids. Angew. Chem. Int. Ed. 47(45), 8731–8734 (2008).  https://doi.org/10.1002/anie.200803446CrossRefGoogle Scholar
  36. 36.
    A. Lewandowski, A. Świderska-Mocek, Ionic liquids as electrolytes for Li-ion batteries – An overview of electrochemical studies. J. Power Sources 194(2), 601–609 (2009).  https://doi.org/10.1016/j.jpowsour.2009.06.089CrossRefGoogle Scholar
  37. 37.
    C. Liao, N. Shao, K.S. Han, X.-G. Sun, D.-E. Jiang, E.W. Hagaman, S. Dai, Physicochemical properties of imidazolium-derived ionic liquids with different C-2 substitutions. Phys. Chem. Chem. Phys. 13(48), 21503–21510 (2011).  https://doi.org/10.1039/C1CP22375ECrossRefGoogle Scholar
  38. 38.
    D.R. MacFarlane, N. Tachikawa, M. Forsyth, J.M. Pringle, P.C. Howlett, G.D. Elliott, et al., Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014).  https://doi.org/10.1039/C3EE42099JCrossRefGoogle Scholar
  39. 39.
    K. Noack, P.S. Schulz, N. Paape, J. Kiefer, P. Wasserscheid, A. Leipertz, The role of the C2 position in interionic interactions of imidazolium-based ionic liquids: a vibrational and NMR spectroscopic study. Phys. Chem. Chem. Phys. 12(42), 14153–14161 (2010).  https://doi.org/10.1039/C0CP00486CCrossRefGoogle Scholar
  40. 40.
    S. Pandian, S.G. Raju, K.S. Hariharan, S.M. Kolake, D.-H. Park, M.-J. Lee, Functionalized ionic liquids as electrolytes for lithium-ion batteries. J. Power Sources 286, 204–209 (2015).  https://doi.org/10.1016/j.jpowsour.2015.03.130CrossRefGoogle Scholar
  41. 41.
    M. Park, X. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries. J. Power Sources 195(24), 7904–7929 (2010).  https://doi.org/10.1016/j.jpowsour.2010.06.060CrossRefGoogle Scholar
  42. 42.
    J. Reiter, E. Paillard, L. Grande, M. Winter, S. Passerini, Physicochemical properties of N-methoxyethyl-N-methyl pyrrolidinium ionic liquids with perfluorinated anions. Electrochim. Acta 91, 101–107 (2013).  https://doi.org/10.1016/j.electacta.2012.12.086CrossRefGoogle Scholar
  43. 43.
    A.D. Robertson, A.R. West, A.G. Ritchie, Review of crystalline lithium-ion conductors suitable for high-temperature battery applications. Solid State Ionics 104(1), 1–11 (1997).  https://doi.org/10.1016/S0167-2738(97)00429-3CrossRefGoogle Scholar
  44. 44.
    B. Scrosati, J. Garche, Lithium batteries: Status, prospects, and future. J. Power Sources 195(9), 2419–2430 (2010).  https://doi.org/10.1016/j.jpowsour.2009.11.048CrossRefGoogle Scholar
  45. 45.
    B. Scrosati, J. Hassoun, Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4(9), 3287–3295 (2011).  https://doi.org/10.1039/C1EE01388BCrossRefGoogle Scholar
  46. 46.
    S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, et al., Lithium secondary batteries using modified-Imidazolium Room-temperature ionic liquid. J. Phys. Chem. B 110(21), 10228–10230 (2006).  https://doi.org/10.1021/jp0620872CrossRefGoogle Scholar
  47. 47.
    E.O. Stejskal, Use of spin echoes in a pulsed magnetic-field gradient to study anisotropic, restricted diffusion and flow. J. Chem. Phys. 43(10), 3597–3603 (1965).  https://doi.org/10.1063/1.1696526CrossRefGoogle Scholar
  48. 48.
    K. Tsunashima, M. Sugiya, Physical and electrochemical properties of low-viscosity phosphonium ionic liquids as potential electrolytes. Electrochem. Commun. 9(9), 2353–2358 (2007).  https://doi.org/10.1016/j.elecom.2007.07.003CrossRefGoogle Scholar
  49. 49.
    T. Vogl, S. Menne, A. Balducci, Mixtures of protic ionic liquids and propylene carbonate as advanced electrolytes for lithium-ion batteries. Phys. Chem. Chem. Phys. 16(45), 25014–25023 (2014).  https://doi.org/10.1039/C4CP03830DCrossRefGoogle Scholar
  50. 50.
    T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99(8), 2071–2084 (1999).  https://doi.org/10.1021/cr980032tCrossRefGoogle Scholar
  51. 51.
    M.S. Whittingham, Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976)CrossRefGoogle Scholar
  52. 52.
    A. Yoshino, K. Sanechika, T. Nakajima, Secondary battery: Google Patents (1987)Google Scholar
  53. 53.
    S. Zahn, G. Bruns, J. Thar, B. Kirchner, What keeps ionic liquids in flow? Phys. Chem. Chem. Phys. 10(46), 6921–6924 (2008).  https://doi.org/10.1039/B814962NCrossRefGoogle Scholar
  54. 54.
    S.S. Zhang, A review on electrolyte additives for lithium-ion batteries. J. Power Sources 162(2), 1379–1394 (2006).  https://doi.org/10.1016/j.jpowsour.2006.07.074CrossRefGoogle Scholar
  55. 55.
    H. Zhou, Y. Wang, H. Li, P. He, The Development of a new type of rechargeable batteries based on hybrid electrolytes. ChemSusChem 3(9), 1009–1019 (2010).  https://doi.org/10.1002/cssc.201000123CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryIndian Institute of Technology RoparRupnagarIndia

Personalised recommendations