Skip to main content

Advertisement

SpringerLink
Book cover

Machine Learning for Cyber Physical Systems pp 7–17Cite as

Deduction of time-dependent machine tool characteristics by fuzzy-clustering

Deduction of time-dependent machine tool characteristics by fuzzy-clustering

  • Uwe Frieß5,
  • Martin Kolouch5 &
  • Matthias Putz5 
  • Conference paper
  • Open Access
  • First Online: 18 December 2018
  • 9058 Accesses

  • 1 Citations

Part of the Technologien für die intelligente Automation book series (TIA,volume 9)

Abstract

With the onset of ICT and big data capabilities, the physical asset and data computation is integrated in manufacturing through Cyber Physical Systems (CPS). This strategy also denoted as Industry 4.0 will improve any kind of monitoring for maintenance and production planning purposes. So-called bigdata approaches try to use the extensive amounts of diffuse and distributed data in production systems for monitoring based on artificial neural networks (ANN). These machine learning approaches are robust and accurate if the data base for a given process is sufficient and the scope of the target functions is curtailed. However, a considerable proportion of high-performance manufacturing is characterized by permanently changing process, workpiece and machine configuration conditions, e.g. machining of large workpieces is often performed in batch sizes of one or of a few parts. Therefore, it is not possible to implement a robust condition monitoring based on ANN without structured data-analyses considering different machine states – e.g. a certain machining operation for a certain machine configuration. Fuzzy-clustering of machine states over time creates a stable pool representing different typical machine configuration clusters. The time-depending adjustment and automatized creation of clusters enables monitoring and interpretation of machine tool characteristics independently of single machine states and pre-defined processes.

Keywords

  • Fuzzy logic
  • Machine tool
  • Machine learning
  • Clustering

Download conference paper PDF

References

  1. Lee, J.; Bagheri, B.; Kao, H.-A.: “A Cyber-Physical Systems architecture for Industry 4.0- based manufacturing systems”, Manufacturing Letters. 18–23 2015.

    CrossRef  Google Scholar 

  2. Lu, Y.: Industry 4.0: a survey on technologies, applications and open research issues. Journal of Industrial Information Integration 6, 1-10 (2017).

    CrossRef  Google Scholar 

  3. Gausemeier, J.; Klocke, F.: Industrie 4.0 – International Benchmark, Options for the Future and Recommendations for Manufacturing Research, Paderborn 2016.

    Google Scholar 

  4. J. T. Farinha, I. Fonseca, R. Oliveira und H. Raposo, „CMMS – An integrated view from maintenance management to on-line condition monitoring,“ in Proceedings of Maintenance Performance Measurement and Management (MPMM) Conference, Coimbra, Portugal, 2014.

    Google Scholar 

  5. R. Teti, K. Jemielniak, G. O’Donnell and D. Dornfeld, „Advanced monitoring of machining operations,“ CIRP Annals - Manufacturing Technology, Nr. 59, pp. 717-739, 2010.

    CrossRef  Google Scholar 

  6. W. Derigent, E. Thomas, E. Levrat and B. Iung, „Opportunistic maintenance based on fuzzy modelling of component Proximity,“ CIRP Annals - Manufacturing Technology, Bd. 58, pp. 29-32, 2009.

    Google Scholar 

  7. M. Putz, U. Frieß, M. Wabner, A. Friedrich, A. Zander and H. Schlegel, „State-based and self-adapting Algorithm for Condition Monitoring,“ in 10th CIRP Conference on Intelligent Computation in Manufacturing Engineering - CIRP ICME ‘16, Ischia, Naples, Italy, 20 - 22 July 2016.

    Google Scholar 

  8. U. Frieß, M. Kolouch, M. Putz, A. Friedrich and A. Zander: “Fuzzy-clustering of machine states for condition monitoring”, CIRP Journal of Manufacturing Science and Technology, Vol. XX, xxx-xxx, 2018.

    Google Scholar 

  9. R. Kruse, C. Borgelt, C. Braune, F. Klawonn, C. Moewes und M. Steinbrecher, Computational Intelligence - Eine methodische Einführung in Künstliche Neuronale Netze, Evolutionäre Algorithmen, Fuzzy-Systeme und Bayes-Netze, Wiesbaden: Springer Vieweg, 2. Auflage 2015.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Fraunhofer Institute for Machine Tools and Forming Technology IWU, Chemnitz, Germany

    Uwe Frieß, Martin Kolouch & Matthias Putz

Authors
  1. Uwe Frieß
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Martin Kolouch
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Matthias Putz
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Uwe Frieß .

Editor information

Editors and Affiliations

  1. Institut für Optronik, Systemtechnik und Bildauswertung, Fraunhofer, Karlsruhe, Germany

    Prof. Dr. Jürgen Beyerer

  2. MRD, Fraunhofer Institute for Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany

    Dr. Christian Kühnert

  3. inIT - Institut für industrielle Informationstechnik, Hochschule Ostwestfalen-Lippe, Lemgo, Germany

    Prof. Dr. Oliver Niggemann

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and Permissions

Copyright information

© 2019 The Author(s)

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Frieß, U., Kolouch, M., Putz, M. (2019). Deduction of time-dependent machine tool characteristics by fuzzy-clustering. In: Beyerer, J., Kühnert, C., Niggemann, O. (eds) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation, vol 9. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58485-9_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-58485-9_2

  • Published: 18 December 2018

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58484-2

  • Online ISBN: 978-3-662-58485-9

  • eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.