Skip to main content

Multi-functional Engineered Cementitious Composites (ECC)

  • Chapter
  • First Online:
Engineered Cementitious Composites (ECC)

Abstract

To support smart infrastructure development in smart cities, it is natural to expect that modern concrete can do more than just carrying load. While offering enhancements in infrastructure resilience, durability, and sustainability, Engineered Cementitious Composites (ECC) can also offer multifunctionalities. Multifunctional ECCs have the ability to adapt and respond to the changing external environment.

In this chapter, thermal adaptive ECC, self-healing ECC, photo-catalytic ECC, and self-sensing ECC are described. Self-sensing and self-healing ECC can support infrastructure service-life extension with minimal inspection and maintenance. The material detects damage so that repair is applied only when and where it is needed. Even better, self-healing restores its mechanical and transport resistance without any external intervention, thus maintaining durability on a continuous basis. After a major load event, such smart ECC can assist in rapid recovery of infrastructure functions, leading to improved community resilience. Thermal adaptive ECC offers the possibility of reducing building energy use by adapting its thermal capacity in response to external temperature change. Photo-catalytic ECC offers the possibility of maintaining aesthetics and even purifying the surrounding air of the infrastructure in an autogenous fashion. These multifunctions enable operational values of the infrastructure while retaining the basic load carrying functions. They contribute directly to the sustainability of civil infrastructure.

This last chapter of the book offers a glimpse of building smart functions into a two-century-old concrete material. It serves as a preview of future infrastructures of smart cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassar, L.: Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull. 29(05), 328–331 (2004)

    Article  CAS  Google Scholar 

  2. Jonkers, H.M., Thijssen, A., Muyzer, G., Copuroglu, O., Schlangen, E.: Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol. Eng. 36(2), 230–235 (2010)

    Article  Google Scholar 

  3. Cabeza, L.F., Castellón, C., Nogués, M., Medrano, M., Leppers, R., Zubillaga, O.: Use of microencapsulated PCM in concrete walls for energy savings. Energ. Buildings. 39(2), 113–119 (2007)

    Article  Google Scholar 

  4. Alkan, C.: Enthalpy of melting and solidification of sulfonated paraffins as phase change materials for thermal energy storage. Thermochim. Acta. 451(1–2), 126–130 (2006)

    Article  CAS  Google Scholar 

  5. Desai, D., Miller, M., Lynch, J.P., Li, V.C.: Development of thermally adaptive Engineered Cementitious Composite for passive heat storage. Constr. Build. Mater. 67(Part C), 366–372 (2014)

    Article  Google Scholar 

  6. Van Breugel, K.: Is there a market for self-healing cement-based materials. In: Proceedings of the First International Conference on Self Healing Materials, no. April, pp. 1–9 (2007)

    Google Scholar 

  7. Van Tittelboom, K., De Belie, N., De Muynck, W., Verstraete, W.: Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40(1), 157–166 (2010)

    Article  Google Scholar 

  8. Ahn, T.-H., Kishi, T.: Crack self-healing behavior of cementitious composites incorporating various mineral admixtures. J. Adv. Concr. Technol. 8(2), 171–186 (2010)

    Article  CAS  Google Scholar 

  9. Li, V.C., Lim, Y.M., Chan, Y.-W.: Feasibility study of a passive smart self-healing cementitious composite. Compos. Part B Eng. 29(6), 819–827 (1998)

    Article  Google Scholar 

  10. Van Tittelboom, K., De Belie, N., Van Loo, D., Jacobs, P.: Self-healing efficiency of cementitious materials containing tubular capsules filled with healing agent. Cem. Concr. Compos. 33(4), 497–505 (2011)

    Article  Google Scholar 

  11. Van Tittelboom, K., Wang, J., Araújo, M., Snoeck, D., Gruyaert, E., Debbaut, B., Derluyn, H., Cnudde, V., Tsangouri, E., Van Hemelrijck, D., De Belie, N.: Comparison of different approaches for self-healing concrete in a large-scale lab test. Constr. Build. Mater. 107, 125–137 (2016)

    Article  Google Scholar 

  12. Li, V.C., Herbert, E.: Robust self-healing concrete for sustainable infrastructure. J. Adv. Concr. Technol. 10(6), 207–218 (2012)

    Article  CAS  Google Scholar 

  13. Yildirim, G., Keskin, Ö.K., Keskin, S.B., Şahmaran, M., Lachemi, M.: A review of intrinsic self-healing capability of engineered cementitious composites: recovery of transport and mechanical properties. Constr. Build. Mater. 101, 10–21 (2015)

    Article  Google Scholar 

  14. Stutzman, P.E.: Scanning electron microscopy in concrete petrography. In: Skalny, J., Gebauer, J., Odler, I. (eds.) Materials Science of Concrete Special Volume: Calcium Hydroxide in Concrete (Workshop on the Role of Calcium Hydroxide in Concrete). Proceedings, pp. 59–72. The American Ceramic Society, Westerville, Ohio (2001)

    Google Scholar 

  15. Concrete Expert International: Concrete Expert International carbonation crack line. 2018. [Online]. Available: http://www.concrete-experts.com. Assessed, 18 Jan 2019

  16. Yang, Y., Lepech, M.D., Yang, E.-H., Li, V.C.: Autogenous healing of engineered cementitious composites under wet-dry cycles. Cem. Concr. Res. 39(5), 382–390 (2009)

    Article  CAS  Google Scholar 

  17. Fan, S., Li, M.: X-ray computed microtomography of three-dimensional microcracks and self-healing in engineered cementitious composites. Smart Mater. Struct. 24(1), 1–14 (2015)

    Article  Google Scholar 

  18. Kan, L.L., Shi, H.S., Sakulich, A.R., Li, V.C.: Self-healing characterization of engineered cementitious composite materials. ACI Mater. J. 107(6), 617–624 (2010)

    CAS  Google Scholar 

  19. Suryanto, B., Buckman, J.O., Thompson, P., Bolbol, M., McCarter, W.J.: Monitoring micro-crack healing in an engineered cementitious composite using the environmental scanning electron microscope. Mater. Charact. 119, 175–185 (2016)

    Article  CAS  Google Scholar 

  20. Yıldırım, G., Khiavi, A.H., Yeşilmen, S., Şahmaran, M.: Self-healing performance of aged cementitious composites. Cem. Concr. Compos. 87, 172–186 (2018)

    Article  Google Scholar 

  21. Lepech, M.D., Li, V.C.: Water permeability of engineered cementitious composites. Cem. Concr. Compos. 31(10), 744–753 (2009)

    Article  CAS  Google Scholar 

  22. Ma, H., Qian, S., Zhang, Z.: Effect of self-healing on water permeability and mechanical property of Medium-Early-Strength Engineered Cementitious Composites. Constr. Build. Mater. 68, 92–101 (2014)

    Article  Google Scholar 

  23. Liu, H., Zhang, Q., Gu, C., Su, H., Li, V.C.: Influence of micro-cracking on the permeability of Engineered Cementitious Composites. Cem. Concr. Compos. 58, 104–113 (2016)

    Article  Google Scholar 

  24. Yang, Y., Lepech, M., Li, V.C.: Self-healing of engineered cementitious composites under cyclic wetting and drying. In: International Workshop on Durability of Reinforced Concrete Under Combined Mechanical and Climatic Loads (CMCL), Qingdao Technical University, Qingdao, China, pp. 231–242 (2005)

    Google Scholar 

  25. Sisomphon, K., Copuroglu, O., Koenders, E.A.B..: Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 42, 217–224 (2013)

    Article  Google Scholar 

  26. Yang, Y., Yang, E.-H., Li, V.C.: Autogenous healing of engineered cementitious composites at early age. Cem. Concr. Res. 41(2), 176–183 (2011)

    Article  CAS  Google Scholar 

  27. Sahmaran, M., Li, M., Li, V.C.: Transport properties of engineered cementitious composites under chloride exposure. ACI Mater. J. 104(November–December), 604–611 (2007)

    CAS  Google Scholar 

  28. Li, M., Li, V.C.: Cracking and healing of engineered cementitious composites under chloride environment. ACI Mater. J. 108(3), 333–340 (2011)

    CAS  Google Scholar 

  29. Liu, H., Zhang, Q., Gu, C., Su, H., Li, V.C.: Self-healing of microcracks in Engineered Cementitious Composites under sulfate and chloride environment. Constr. Build. Mater. 153, 948–956 (2017)

    Article  CAS  Google Scholar 

  30. Şahmaran, M., Li, V.C.: De-icing salt scaling resistance of mechanically loaded engineered cementitious composites. Cem. Concr. Res. 37(7), 1035–1046 (2007)

    Article  Google Scholar 

  31. Şahmaran, M., Li, V.C.: Durability of mechanically loaded engineered cementitious composites under highly alkaline environments. Cem. Concr. Compos. 30(2), 72–81 (2008)

    Article  Google Scholar 

  32. Herbert, E.N., Li, V.C.: Self-healing of engineered cementitious composites in the natural environment. In: High Performance Fiber Reinforced Cement Composites 6. In: Parra-Montesinos, G., Naaman, A.E., Reinhardt, H.W., (eds.), Springer, Dordrecht Heidelberg London New York, pp. 148–155 (2012)

    Google Scholar 

  33. Li, V.C., Herbert, E.N.: Self-healing of microcracks in engineered cementitious composites (ECC) under a natural environment. Materials (Basel). 6(7), 2831–2845 (2013)

    Article  Google Scholar 

  34. Suryanto, B., McCarter, W.J., Starrs, G., Wilson, S.A., Traynor, R.M.: Smart cement composites for durable and intelligent infrastructure. Procedia Eng. 125, 796–803 (2015)

    Article  Google Scholar 

  35. Yamamoto, A., Watanabe, K., Li, V.C., Niwa, J.: Effect of wet-dry condition on self-healing property of early-age ECC. Japan Concr. Inst. 32(1), 251–256 (2010)

    Google Scholar 

  36. Yildirim, G., Sahmaran, M., Ahmed, H.U.: Influence of hydrated lime addition on the self-healing capability of high-volume fly ash incorporated cementitious composites. J. Mater. Civ. Eng. 27(6), 04014187 (2015)

    Article  Google Scholar 

  37. Qiu, J., Tan, H.S., Yang, E.H.: Coupled effects of crack width, slag content, and conditioning alkalinity on autogenous healing of engineered cementitious composites. Cem. Concr. Compos. 73, 203–212 (2016)

    Article  CAS  Google Scholar 

  38. Chen, J., sun Poon, C.: Photocatalytic construction and building materials: from fundamentals to applications. Build. Environ. 44(9), 1899–1906 (2009)

    Article  Google Scholar 

  39. Hashimoto, K., Irie, H., Fujishima, A.: TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)

    Article  CAS  Google Scholar 

  40. Zhao, A., Yang, J., Yang, E.-H.: Self-cleaning engineered cementitious composites. Cem. Concr. Compos. 64, 74–83 (2015)

    Article  CAS  Google Scholar 

  41. Lynch, J., Kamat, V., Li, V.C., Flynn, M., Sylvester, D., Najafi, K., Gorden, T., Lepech, M., Emami-Naeini, A., Krimotat, A., Ettouney, M., Alampalli, S., Ozdemir, T.: Overview of a cyber-enabled wireless monitoring system for the protection and management of critical infrastructure systems. Int. Soc. Opt. Eng. 7294(734), 72940L–72940L (2009)

    Google Scholar 

  42. Hou, T.-C., Lynch, J.P.: Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components. In: Proceedings of the SPIE, vol. 5765, 419–429 (2005)

    Google Scholar 

  43. Hou, T., Lynch, J.P.: Tomographic imaging of crack damage in cementitious structural components. In: 4th International Conference on Earthquake Engineering, Paper No. 162, no. October 12–13 (2006)

    Google Scholar 

  44. Hou, T.-C., Lynch, J.P.: Electrical impedance tomographic methods for sensing strain fields and crack damage in cementitious structures. J. Intell. Mater. Syst. Struct. 20(11), 1363–1379 (2009)

    Article  CAS  Google Scholar 

  45. Saraireh, D., Walls, S., Suryanto, B., Starrs, G., Mccarter, W.J.: The influence of multiple micro-cracking on the electrical impedance of an engineered cementitious composite. In: Strain-Hardening Cement-Based Composites SHCC-4, Springer, Dresden, Germany, vol. 15, pp. 292–299 (2018)

    Google Scholar 

  46. Lin, V., Li, M., Lynch, J.P., Li, V.C.: Mechanical and electrical characterization of self-sensing carbon black ECC. In: Proceedings of SPIE, Nondestructive Characterization for Composite Materials, Aerospace Engineering, Civil Infrastructure, and Home Security, vol. 7983, no. April 2011, pp. 1–12 (2011)

    Google Scholar 

  47. Li, M., Lin, V., Lynch, J., Li, V.C.: Carbon Black Engineered Cementitious Composites-Mechanical and Electrical Characterization. ACI Spec. Publ. 292–5(1–16) (2013)

    Google Scholar 

  48. Ranade, R., Zhang, J., Lynch, J.P., Li, V.C.: Influence of micro-cracking on the composite resistivity of Engineered Cementitious Composites. Cem. Concr. Res. 58, 1–12 (2014)

    Article  CAS  Google Scholar 

  49. Yu, J., Leung, C.K.Y.: Novel experimental method to determine crack-bridging constitutive relationship of SHCC using digital image processing. In: Strain-Hardening Cement-Based Composites SHCC-4, Springer, Dresden, Germany, vol. 15, pp. 55–62 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, V.C. (2019). Multi-functional Engineered Cementitious Composites (ECC). In: Engineered Cementitious Composites (ECC). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58438-5_10

Download citation

Publish with us

Policies and ethics