Skip to main content

Pricing Anonymity

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10957))

Abstract

In electronic anonymity markets a taker seeks a specified number of market makers in order to anonymize a transaction or activity. This process requires both coalition formation, in order to create an anonymity set among the taker and makers, and the derivation of the fee that the taker pays each maker. The process has a novel property in that the taker pays for anonymity but anonymity is created for both the taker and the makers. Using the Shapley value for nontransferable utility cooperative games, we characterize the formation of the anonymity set and the fee for any arbitrary number of makers selected by the taker.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The popular belief that Bitcoin payments are anonymous is wrong. This cryptocurrency uses pseudonymous accounts and a public transaction ledger. Agents who want to hide the relation between their accounts, some of which may fully identify them, need anonymizing technology [6].

  2. 2.

    See http://joinmarket.io. Last visited on June 25th, 2018.

  3. 3.

    See Meiklejohn and Orlandi [22] on the hardness of untangling CoinJoin transactions.

  4. 4.

    The fee is composed of fixed and variable parts to account for contributions to the Bitcoin network’s miner fees. Our model abstracts from this complexity by assuming a normalized nominal transaction value.

  5. 5.

    Public goods have the property that they are nonexclusive and nonrival [34]. Nonexclusive means that once created, the associated benefits of the good cannot be withheld from others. Technically, the nonexcludability property of anonymity applies only to the makers and taker engaged in the transaction. Nonrivalry means that use of the good does not prohibit its use by others.

  6. 6.

    This definition is compatible with common alternatives. For example, the size of the anonymity set corresponds to the parameter k in the k-anonymity model [39]. Entropy-based anonymity metrics generalize to sets with non-uniform priors [10, 35].

  7. 7.

    In addition to the first-order risk of losing one’s identity, makers may also face the risk of legal authorities investigating Bitcoin purchases as part of a criminal investigation. This potentiality lies beyond the scope of the present paper.

  8. 8.

    Technically, any \(y_i \le x_i\) is a potential payoff for player i as well. This property is known as “comprehensiveness” [28].

  9. 9.

    Myerson [26, p. 16] offers an alternative interpretation: “With nontransferable utility, we have no grounds for interpersonal comparison of utility, so we may feel free to rescale either player’s utility separately by a positive scaling factor or utility weight \(\lambda _i\). Now, in the rescaled version of the game, pretend that the weighted-utility payoffs are transferable.”

  10. 10.

    As the proof is based on a fixed point theorem it does not guarantee uniqueness. We are unaware of any example in the literature where multiple weights are derived that lead to alternative NTU Shapley values. If multiple fixed points exist, selecting among them is a well-defined problem. A natural criterion would be to maximize the taker’s payoff.

  11. 11.

    This is consistent with finding a solution under the condition \(\lambda _t= \lambda _1 = \lambda _2\) (where all \(\lambda \)’s are finite), which yields an equivalent result.

  12. 12.

    The term \(\delta D- F\) must be nonnegative; otherwise, the outside alternative is not viable for the taker.

References

  1. Abramova, S., Schöttle, P., Böhme, R.: Mixing coins of different quality: a game-theoretic approach. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 280–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_18

    Chapter  Google Scholar 

  2. Acquisti, A., Dingledine, R., Syverson, P.: On the economics of anonymity. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 84–102. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45126-6_7

    Chapter  Google Scholar 

  3. Acquisti, A., Taylor, C., Wagman, L.: The economics of privacy. J. Econ. Lit. 54(2), 442–492 (2016)

    Article  Google Scholar 

  4. Acquisti, A., Varian, H.R.: Conditioning prices on purchase history. Market. Sci. 24(3), 367–381 (2005)

    Article  Google Scholar 

  5. Androulaki, E., Raykova, M., Srivatsan, S., Stavrou, A., Bellovin, S.M.: PAR: payment for anonymous routing. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp. 219–236. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-4_14

    Chapter  Google Scholar 

  6. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: economics, technology, and governance. J. Econ. Perspect. 29(2), 213–238 (2015)

    Article  Google Scholar 

  7. Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31

    Chapter  Google Scholar 

  8. Chessa, M., Grossklags, J., Loiseau, P.: A game-theoretic study on non-monetary incentives in data analytics projects with privacy implications. In: Fournet, C., Hicks, M.W., Viganò, L. (eds.) Proceedings of the Computer Security Foundations Symposium (CSF), pp. 90–104. IEEE Computer Society (2015)

    Google Scholar 

  9. Chessa, M., Loiseau, P.: A cooperative game-theoretic approach to quantify the value of personal data in networks. In: Proceedings of the 12th Workshop on the Economics of Networks, Systems and Computation, no. 9. ACM, Cambridge (2017)

    Google Scholar 

  10. Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_5

    Chapter  Google Scholar 

  11. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion router. In: 13th USENIX Security Symposium. USENIX Association (2004)

    Google Scholar 

  12. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  13. Franz, E., Jerichow, A., Wicke, G.: A payment scheme for mixes providing anonymity. In: Lamersdorf, W., Merz, M. (eds.) TREC 1998. LNCS, vol. 1402, pp. 94–108. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0053404

    Chapter  Google Scholar 

  14. Friedman, E., Resnick, P.: The social cost of cheap pseudonyms. J. Econ. Manag. Strategy 10(2), 173–199 (2001)

    Article  Google Scholar 

  15. Gkatzelis, V., Aperjis, C., Huberman, B.A.: Pricing private data. Electron. Markets 25(2), 109–123 (2015)

    Article  Google Scholar 

  16. Harsanyi, J.C.: A simplified bargaining model for the \(n\)-person cooperative game. Int. Econ. Rev. 4(2), 194–220 (1963)

    Article  Google Scholar 

  17. Jansen, R., Johnson, A., Syverson, P.: LIRA: lightweight incentivized routing for anonymity. In: Proceedings of the Network and Distributed System Security Symposium (NDSS). The Internet Society (2013)

    Google Scholar 

  18. Kleinberg, J., Papadimitriou, C.H., Raghavan, P.: On the value of private information. In: Proceedings of the 8th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), pp. 249–257. ACM, New York (2001)

    Google Scholar 

  19. Köpsell, S.: Low latency anonymous communication – how long are users willing to wait? In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 221–237. Springer, Heidelberg (2006). https://doi.org/10.1007/11766155_16

    Chapter  Google Scholar 

  20. Maschler, M., Owen, G.: The consistent Shapley value for games without sidepayments. In: Selten, R. (ed.) Rational Interaction, pp. 5–12. Springer, New York (1992). https://doi.org/10.1007/978-3-662-09664-2_2

    Chapter  Google Scholar 

  21. Maxwell, G.: CoinJoin: Bitcoin privacy for the real world (2013). https://bitcointalk.org/index.php?topic=279249.0

  22. Meiklejohn, S., Orlandi, C.: Privacy-enhancing overlays in bitcoin. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 127–141. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_10

    Chapter  Google Scholar 

  23. Möser, M., Böhme, R.: Join me on a market for anonymity. In: Workshop on the Economics of Information Security (WEIS), Berkeley, CA (2016)

    Google Scholar 

  24. Möser, M., Böhme, R.: The price of anonymity: empirical evidence from a market for Bitcoin anonymization. J. Cybersecur. 3(2), 127–135 (2017)

    Article  Google Scholar 

  25. Möser, M., Böhme, R., Breuker, D.: An inquiry into money laundering tools in the Bitcoin ecosystem. In: Proceedings of the APWG E-Crime Researchers Summit, pp. 1–14. IEEE, San Francisco (2013)

    Google Scholar 

  26. Myerson, R.B.: Fictitious-transfer solutions in cooperative game theory. In: Selten, R. (ed.) Rational Interaction, pp. 13–33. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-662-09664-2_3

    Chapter  Google Scholar 

  27. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and Crypocurrency Technologies. A Comprehensive Introduction. Princeton University Press, Princeton (2016)

    MATH  Google Scholar 

  28. Owen, G.: Game Theory. W. B. Saunders, Philadelphia (1968)

    MATH  Google Scholar 

  29. Padilla, A.J., Pagano, M.: Sharing default information as a borrower discipline device. Eur. Econ. Rev. 44(10), 1951–1980 (2000)

    Article  Google Scholar 

  30. Pagano, M., Jappelli, T.: Information sharing in credit markets. J. Finance 48(5), 1693–1718 (1993)

    Article  Google Scholar 

  31. Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games, 2nd edn. Kluwer Academic, Boston (2007)

    MATH  Google Scholar 

  32. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity - a proposal for terminology. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 1–9. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Saad, W., Han, Z., Debbah, M., Hjørungnes, A., Başar, T.: Coalitional game theory for communication networks: a tutorial (2009). https://arxiv.org/abs/0905.4057

    Article  Google Scholar 

  34. Sandler, T.: Collective Action. University of Michigan Press, Ann Arbor (1992)

    Google Scholar 

  35. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6_4

    Chapter  Google Scholar 

  36. Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, vol. II, pp. 307–317. Princeton University Press, Princeton (1953)

    Google Scholar 

  37. Shapley, L.S.: Utility comparisons and the theory of games. In: La Décision: Aggrégation et Dynamique des Orders de Préférences, pp. 251–263. Éditions du Centre Nationale de la Recherche Scientifique, Paris (1969)

    Google Scholar 

  38. Shapley, L.S.: Utility comparisons and the theory of games. In: Roth, A.E. (ed.) The Shapley Value. Essays in Honor of Lloyd S. Shapley, pp. 307–319. Cambridge University Press (1988)

    Google Scholar 

  39. Sweeney, L.: \(k\)-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowl.-Based Syst. 10(5), 571–588 (2002)

    Article  MathSciNet  Google Scholar 

  40. Zhu, H.: Do dark pools harm price discovery? Rev. Financ. Stud. 27(3), 747–780 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

We thank the anonymous reviewers for helpful comments. The second author is funded in part by Archimedes Privatstiftung, Innsbruck, and the German Bundesministerium für Bildung und Forschung (BMBF) under grant agreement 16KIS0382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel G. Arce .

Editor information

Editors and Affiliations

Appendices

Appendix

A Shapley Value Derivation for the 3-Player Example

Following the formula given in Eq. (2), the Shapley value for the taker, \(t\), with the makers as players 1 and 2, is

$$ \begin{aligned} \varphi _t(\omega , \varvec{\lambda }) =&\frac{1}{3} \bigl (\omega (N)-\omega (\{1, 2\})\bigr )\,+&\text {(grand coalition)} \nonumber \\&\frac{1}{6} \bigl (\omega (\{t, 1\})-\omega (\{1\})\bigr )\,+&\text {(taker}\, \& \, \text {maker 1)} \nonumber \\&\frac{1}{6} \bigl (\omega (\{t, 2\})-\omega (\{2\})\bigr )\,+&\text {(taker}\, \& \, \text {maker 2)} \nonumber \\&\frac{1}{3} \bigl (\omega (\{t\})-\omega (\emptyset )\bigr ).&\text {(taker alone)} \end{aligned}$$
(32)

Substituting in the worth function values, Eqs. 10–15,

(by convention, \(\omega (\emptyset )=0\)):

$$\begin{aligned} \varphi _t(\omega , \varvec{\lambda })&= \frac{1}{3}\left( \frac{2}{3}D+ \frac{4}{3}d\right) + \frac{1}{6}\left( \frac{1}{2}D+ \frac{1}{2}d\right) + \frac{1}{6}\left( \frac{1}{2}D+ \frac{1}{2}d\right) + \frac{1}{3}\left( \delta D-F\right) . \end{aligned}$$
(33)

Aggregating terms,

(34)

and simplifying:

$$\begin{aligned}&= \frac{14}{36}D+ \frac{22}{36}d+ \frac{1}{3}\left( \delta D-F\right) . \end{aligned}$$
(35)

Using Eq. (2) to calculate the Shapley value for player 1, who is a maker:

(36)

Substituting in the worth function values:

$$\begin{aligned} \varphi _1(\omega , \varvec{\lambda })&= \frac{1}{3}\left( \frac{2}{3}D+ \frac{4}{3}d- \frac{1}{2}D- \frac{1}{2}d\right) + \frac{1}{6}\left( \frac{1}{2}D+ \frac{1}{2}d- \left( \delta D-F\right) \right) . \end{aligned}$$
(37)

Aggregating terms and simplifying:

$$\begin{aligned} \varphi _1(\omega , \varvec{\lambda })&= \left( \frac{2}{9}-\frac{1}{6}+\frac{1}{12}\right) D+ \left( \frac{4}{9}-\frac{1}{6}+\frac{1}{12}\right) d- \frac{1}{6}\left( \delta D-F\right) \end{aligned}$$
(38)
$$\begin{aligned}&= \frac{5}{36}D+ \frac{13}{36}d- \frac{1}{6}\left( \delta D-F\right) . \end{aligned}$$
(39)

By the symmetry property of the Shapley value, \(\varphi _2(\omega , \varvec{\lambda }) = \varphi _1(\omega , \varvec{\lambda })\).    \(\square \)

B Proof of Theorem 2

The proof consists of three parts.

1.1 B.1 Shapley Value for the Taker

Proof

From Eq. (2), the coefficient on \(\omega (\{t\})-\omega (\emptyset ) = \delta D-F\) in the Shapley value is \(1/N= 1/(m+1)\). This is the first term in Eq. (28).

Given \(m\) makers, there are \({m\atopwithdelims ()n} = \frac{m!}{n!\,(m-n)!}\) combinations of coalitions that can be expressed as \(S=\{t, n\}\). Note also that \(N= m+1\). From Eq. (2), the coefficient on each coalition \(\{t, n\}\) in the Shapley value is

$$\begin{aligned} \frac{(|S|-1)!\,(N-|S|)!}{N!}&= \frac{\bigl ((n+1)-1\bigr )!\,\bigl ((m+1)-(n+1)\bigr )!}{(m+1)!} = \frac{n!\,(m-n)!}{(m+1)\,m!}. \end{aligned}$$
(40)

For each coalition, \(\{t, n\}\), the marginal contribution for the taker in the formula for \(\varphi _t\) is \(\bigl (\omega (\{t, n\})-\omega (\{n\})\bigr )=\omega (\{t, n\})\). In aggregate, the partial sum in the Shapley value for a specific \(n\) is the product of the following three terms: (i) the number of \(\{t, n\}\) coalitions, (ii) the Shapley coefficient that is common to each \(\{t, n\}\) coalition, (40), and (iii) \(\bigl (\omega (\{t, n\})-\omega (\{n\})\bigr )=\omega (\{t, n\})\), from Eq. (27):

$$\begin{aligned}&\frac{m!}{n!\,(m-n)!} \times \frac{n!\,(m-n)!}{(m+1)\,m!} \times \omega (\{t, n\} = \frac{1}{m+1} \left( \frac{n}{n+1}D+ \frac{n^2}{n+1}d\right) .&\end{aligned}$$
(41)

Summing this over all possible \(n= 1, \dots , m\) yields the final two terms in Eq. (28). This completes the derivation of the Shapley value for the taker, \(\varphi _t/\lambda _t\), given that \(\lambda _t= 1\).

1.2 B.2 Shapley Value for the Makers

In deriving the Shapley value for maker i, \(\varphi _i\), note that for any coalition, \(\hat{S}\), where . This simplifies the remaining steps for calculating the Shapley value for i to only those worth functions whose coalitions include a taker, \(t\), as a member; i. e., \(\omega (\{t, n\})\).

Proof

For any maker, i, there is one and only one \(\{t, i\}\) coalition. The coefficient on this coalition in the Shapley value is

$$\begin{aligned} \frac{(2-1)!\,\bigl ((m+1)-2\bigr )!}{(m+1)!}&= \frac{(m-1)!}{(m+1)!} = \frac{1}{m\cdot (m+1)}. \end{aligned}$$
(42)

As \(\omega (\{t, i\})=\nicefrac {1}{2}D+ \nicefrac {1}{2}d\) and \(\omega (\{t, i\}\setminus \{i\}) = \delta D-F\), the part of the calculation of \(\varphi _i\) that corresponds to the marginal contribution of i to \(\{t, i\}\) is:

$$\begin{aligned}&\frac{1}{m\cdot (m+1)} \Bigl (\omega (\{t, i\})-\omega (\{t, i\}\setminus \{i\})\Bigr ) = \frac{1}{m\cdot (m+1)} \left( \frac{1}{2}D+ \frac{1}{2}d- (\delta D-F)\right) .&\end{aligned}$$
(43)

From Eq. (2) the calculation of the Shapley value is now:

(44)

The remainder of the coalitions where \(i \in \{t, n\}\) require \(n\ge 2\). For a given \(n\), the number of coalitions for which maker i is a member, \(i \in \{t, n\}\), is

(45)

Given \(n\), the coefficient in the Shapley value for the marginal contribution, \(\omega (\{t, n\})-\omega (\{t, n\}\setminus \{i\})\), of maker i is

(46)

To calculate \(\omega (\{t, n\})-\omega (\{t, n\}\setminus \{i\})\), use Eq. (27) and observe that

(47)

Consequently, i’s marginal contribution to the coalition \(\{t, n\}\) is

(48)

Hence, when \(n\ge 2\), for a given value of \(n\) the partial sum within the Shapley value corresponding to \(\{t, n\}\) such that \(i \in \{t, n\}\) is the product:

(49)

Summing this over all possible \(n= 2, \dots , m\) yields:

(50)

To derive \(\varphi _i\), combine this with the Shapley value term for \(\{t, i\}\), Eq. (43):

(51)

Aggregating terms:

(52)

This completes the derivation of the Shapley value for a maker, \(\varphi _i/\lambda _i\), given \(\lambda _i = 1\).

1.3 B.3 Feasibility Check

The final step requires verification that \(\varphi _i/\lambda _i\) is feasible for \(V(N)\). This is facilitated using the expressions of \(\varphi _t/\lambda _t\) and \(\varphi _i/\lambda _i\) in terms of harmonic numbers, as given in Eqs. (56) and (57) in Appendix C.

Proof

Recall that the fee, \(f\), given in Eq. (31) was derived from the feasibility condition for \(\varphi _t/\lambda _t\) when \(\lambda _t= 1\): \(\varphi _t\le \frac{m}{m+1}D-mf\), yielding \(f= \frac{1}{m+1}D-\frac{1}{m}\varphi _t\). The feasibility condition for \(\varphi _i/\lambda _i\) when \(\lambda _i=1\) is

$$\begin{aligned} \varphi _i \le \frac{m}{m+1}d+f&= \frac{m}{m+1}d+ \frac{1}{m+1}D- \frac{1}{m}\varphi _t. \end{aligned}$$
(53)

Setting the two sides equal and substituting in the value for \(\varphi _t\), Eq. (56):

(54)

which reduces to

(55)

This is exactly the right side of Eq. (57). Hence the condition holds under the theorem.

C Alternative Form of Theorem 2 Using Harmonic Numbers

Let \(H_{m}\) denote the \(m\)-th harmonic number, i.e., \(H_{m}=\sum _{n=1}^m\frac{1}{n}\). Using this shorthand, Eq. (28) of Theorem 2 can be rewritten as,

$$\begin{aligned} \frac{\varphi _t(\omega , \varvec{\lambda })}{\lambda _t}&= \frac{\delta D-F+ D\cdot (m- H_{m+1} +1) + d\cdot \left( H_{m+1}+\left( \frac{m}{2}-1\right) \left( m+1\right) \right) }{m+1}; \end{aligned}$$
(56)

and Eq. (29) becomes:

(57)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arce, D.G., Böhme, R. (2018). Pricing Anonymity. In: Meiklejohn, S., Sako, K. (eds) Financial Cryptography and Data Security. FC 2018. Lecture Notes in Computer Science(), vol 10957. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58387-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58387-6_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58386-9

  • Online ISBN: 978-3-662-58387-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics