Skip to main content

Decision Diagrams for Petri Nets: A Comparison of Variable Ordering Algorithms

  • Chapter
  • First Online:
Transactions on Petri Nets and Other Models of Concurrency XIII

Part of the book series: Lecture Notes in Computer Science ((TOPNOC,volume 11090))

Abstract

The efficacy of decision diagram techniques for state space generation is known to be heavily dependent on the variable order. Ordering can be done a-priori (static) or during the state space generation (dynamic). We focus our attention on static ordering techniques. Many static decision diagram variable ordering techniques exist, but it is hard to choose which method to use, since only fragmented performance information is available. In the work reported in this paper we used the models of the Model Checking Contest 2017 edition to conduct an extensive comparison of 18 different algorithms, in order to better understand their efficacy. Comparison is based on the size of the decision diagram of the reachable state space, which is generated using the Saturation method provided by the Meddly library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We actually use a simplified version where weights, model categories and answer correctness are not considered.

References

  1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans. Comput. Syst. 2, 93–122 (1984)

    Article  Google Scholar 

  2. Aldinucci, M., Bagnasco, S., Lusso, S., Pasteris, P., Vallero, S., Rabellino, S.: The open computing cluster for advanced data manipulation (OCCAM). In: 22nd International Conference on Computing in High Energy and Nuclear Physics, San Francisco (2016)

    Google Scholar 

  3. Aloul, F.A., Markov, I.L., Sakallah, K.A.: FORCE: a fast and easy-to-implement variable-ordering heuristic. In: Proceedings of GLSVLSI, pp. 116–119. ACM, New York (2003)

    Google Scholar 

  4. Amparore, E.G.: Reengineering the editor of the GreatSPN framework. In: PNSE@ Petri Nets, pp. 153–170 (2015)

    Google Scholar 

  5. Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G.: 30 years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds.) Principles of Performance and Reliability Modeling and Evaluation. SSRE, pp. 227–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30599-8_9

    Chapter  Google Scholar 

  6. Amparore, E.G., Beccuti, M., Donatelli, S.: (Stochastic) model checking in GreatSPN. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 354–363. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07734-5_19

    Chapter  Google Scholar 

  7. Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A.: Decision diagrams for Petri nets: which variable ordering? In: Petri Net Performance Engineering Conference (PNSE), pp. 31–50. CEUR-WS (2017)

    Google Scholar 

  8. Amparore, E.G., Beccuti, M., Donatelli, S.: Gradient-based variable ordering of decision diagrams for systems with structural units. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 184–200. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_13

    Chapter  Google Scholar 

  9. Baarir, S., Beccuti, M., Cerotti, D., Pierro, M.D., Donatelli, S., Franceschinis, G.: The GreatSPN tool: recent enhancements. Perform. Eval. 36(4), 4–9 (2009)

    Article  Google Scholar 

  10. Babar, J., Miner, A.: Meddly: multi-terminal and edge-valued decision diagram library. In: International Conference on, Quantitative Evaluation of Systems, pp. 195–196. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  11. Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. Comput. 45(9), 993–1002 (1996)

    Article  Google Scholar 

  12. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. 35, 677–691 (1986)

    Article  Google Scholar 

  13. Burch, J.R., Clarke, E.M., Long, D.E.: Symbolic model checking with partitioned transition relations. In: IFIP TC10/WG 10.5 Very Large Scale Integration, pp. 49–58. North-Holland (1991)

    Google Scholar 

  14. Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state—space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45319-9_23

    Chapter  MATH  Google Scholar 

  15. Ciardo, G., Marmorstein, R., Siminiceanu, R.: Saturation unbound. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 379–393. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36577-X_27

    Chapter  Google Scholar 

  16. Ciardo, G., Yu, A.J.: Saturation-based symbolic reachability analysis using conjunctive and disjunctive partitioning. In: Borrione, D., Paul, W. (eds.) CHARME 2005. LNCS, vol. 3725, pp. 146–161. Springer, Heidelberg (2005). https://doi.org/10.1007/11560548_13

    Chapter  Google Scholar 

  17. Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proceedings of the 1969 24th National Conference, pp. 157–172. ACM, New York (1969)

    Google Scholar 

  18. Garavel, H.: Nested-unit petri nets: a structural means to increase efficiency and scalability of verification on elementary nets. In: Devillers, R., Valmari, A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 179–199. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19488-2_9

    Chapter  MATH  Google Scholar 

  19. Gibbs, N., Poole, W., Stockmeyer, P.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. 13(2), 236–250 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Heiner, M., Rohr, C., Schwarick, M., Tovchigrechko, A.A.: MARCIE’s secrets of efficient model checking. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 286–296. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4_14

    Chapter  Google Scholar 

  21. Kamp, E.: Bandwidth, profile and wavefront reduction for static variable ordering in symbolic model checking. University of Twente, Technical report, June 2015

    Google Scholar 

  22. King, I.P.: An automatic reordering scheme for simultaneous equations derived from network systems. J. Numer. Methods Eng. 2(4), 523–533 (1970)

    Article  Google Scholar 

  23. Kordon, F., et al.: Complete Results for the 2017 Edition of the Model Checking Contest, June 2017. http://mcc.lip6.fr/2017/results.php

  24. Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction. BIT Numer. Math. 37(3), 559–590 (1997)

    Article  MathSciNet  Google Scholar 

  25. Meijer, J., van de Pol, J.: Bandwidth and Wavefront reduction for static variable ordering in symbolic reachability analysis. In: Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 255–271. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0_20

    Chapter  Google Scholar 

  26. Miner, A.S.: Implicit GSPN reachability set generation using decision diagrams. Perform. Eval. 56(1–4), 145–165 (2004)

    Article  Google Scholar 

  27. Noack, A.: A ZBDD package for efficient model checking of Petri nets (in German). Ph.D. thesis, BTU Cottbus, Department of CS (1999)

    Google Scholar 

  28. Rice, M., Kulhari, S.: A survey of static variable ordering heuristics for efficient BDD/MDD construction. University of California, Technical report (2008)

    Google Scholar 

  29. Sloan, S.W.: An algorithm for profile and wavefront reduction of sparse matrices. Int. J. Numer. Methods Eng. 23(2), 239–251 (1986)

    Article  MathSciNet  Google Scholar 

  30. Tovchigrechko, A.: Model checking using interval decision diagrams. Ph.D. thesis, BTU Cottbus, Department of CS (2008)

    Google Scholar 

  31. Van Dongen, S.: A cluster algorithm for graphs. Inform. Syst. 10, 1–40 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank the MCC team and all colleagues that collaborated with them for the construction of the MCC database of models, and the Meddly library developers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Gilberto Amparore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amparore, E.G., Donatelli, S., Beccuti, M., Garbi, G., Miner, A. (2018). Decision Diagrams for Petri Nets: A Comparison of Variable Ordering Algorithms. In: Koutny, M., Kristensen, L., Penczek, W. (eds) Transactions on Petri Nets and Other Models of Concurrency XIII. Lecture Notes in Computer Science(), vol 11090. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58381-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58381-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58380-7

  • Online ISBN: 978-3-662-58381-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics