Future Trends in Ligament Surgery: The Role of Biology

  • Graeme P. Whyte
  • Ignacio Dallo
  • Katarzyna Herman
  • Alberto GobbiEmail author


Ligament injury is a frequently cited cause of functional disability and affects people participating in a wide range of physical activities and levels of play. There are numerous potential benefits of ligament repair that include restoration of normal joint kinematics and preservation of proprioception, which may lead to improved long-term preservation of joint anatomy and function. The healing potential for certain ligament injuries is not ideal due to anatomic considerations of vascularity and availability of native reparative growth factors and cellular elements. There are several therapeutic options involving biologic treatments that are becoming more widely used. These therapies include bioactive growth factors and multipotent cellular therapies that can be used in isolation or in combination with surgical treatment to augment ligament repair and regeneration.


MLKIs Multiligaments Injuries PRP Growth factors Scaffolds Mesenchymal MSCs BMAC 


  1. 1.
    Sanders TL, Pareek A, Barrett IJ, Kremers HM, Bryan AJ, Stuart MJ, Levy BA, Krych AJ. Incidence and long-term follow-up of isolated posterior cruciate ligament tears. Knee Surg, Sport Traumatol Arthrosc. 2017;25:3017–23.CrossRefGoogle Scholar
  2. 2.
    Yawn BP, Amadio P, Harmsen WS, Hill J, Ilstrup D, Gabriel S. Isolated acute knee injuries in the general population. J Trauma. 2000;48:716–23.CrossRefGoogle Scholar
  3. 3.
    Gobbi A, Francisco R. Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc. 2006;14:1021–8.CrossRefGoogle Scholar
  4. 4.
    Gobbi A, Mahajan V, Karnatzikos G, Nakamura N. Single- versus double-bundle ACL reconstruction: is there any difference in stability and function at 3-year followup? Clin Orthop Relat Res. 2012;470:824–34.CrossRefGoogle Scholar
  5. 5.
    Cohen M, Amaro JT, Ejnisman B, Carvalho RT, Nakano KK, Peccin MS, Teixeira R, Laurino CFS, Abdalla RJ. Anterior cruciate ligament reconstruction after 10 to 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy. 2007;23:629–34.CrossRefGoogle Scholar
  6. 6.
    Gobbi A, Domzalski M, Pascual J, Zanazzo M. Hamstring anterior cruciate ligament reconstruction: is it necessary to sacrifice the gracilis? Arthroscopy. 2005;21:275–80.CrossRefGoogle Scholar
  7. 7.
    Kartus J, Movin T, Karlsson J. Donor-site morbidity and anterior knee problems after anterior cruciate ligament reconstruction using autografts. Arthroscopy. 2001;17:971–80.CrossRefGoogle Scholar
  8. 8.
    Lohmander LS, Englund PM, Dahl LL, Roos EM. The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med. 2007;35:1756–69.CrossRefGoogle Scholar
  9. 9.
    Vladimirov B. Arterial sources of blood supply of the knee-joint in man. Nauchni Tr Vissh Med Inst Sofiia. 1968;47:1–10.PubMedGoogle Scholar
  10. 10.
    Bray RC, Leonard CA, Salo PT. Vascular physiology and long-term healing of partial ligament tears. J Orthop Res. 2002;20:984–9.CrossRefGoogle Scholar
  11. 11.
    Bray RC, Fisher AW, Frank CB. Fine vascular anatomy of adult rabbit knee ligaments. J Anat. 1990;172:69–79.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Wallace CD, Amiel D. Vascular assessment of the periarticular ligaments of the rabbit knee. J Orthop Res. 1991;9:787–91.CrossRefGoogle Scholar
  13. 13.
    Arnoczky SP. Blood supply to the anterior cruciate ligament and supporting structures. Orthop Clin North Am. 1985;16:15–28.PubMedGoogle Scholar
  14. 14.
    Andrish J, Holmes R. Effects of synovial fluid on fibroblasts in tissue culture. Clin Orthop Relat Res. 1979:279–83.Google Scholar
  15. 15.
    Rość D, Powierza W, Zastawna E, Drewniak W, Michalski A, Kotschy M. Post-traumatic plasminogenesis in intraarticular exudate in the knee joint. Med Sci Monit. 2002;8:CR371–8.PubMedGoogle Scholar
  16. 16.
    Andia I, Sanchez M, Maffulli N. Tendon healing and platelet-rich plasma therapies. Expert Opin Biol Ther. 2010;10:1415–26.CrossRefGoogle Scholar
  17. 17.
    Chen CH, Cao Y, Wu YF, Bais AJ, Gao JS, Tang JB. Tendon healing in vivo: gene expression and production of multiple growth factors in early tendon healing period. J Hand Surg Am. 2008;33:1834–42.CrossRefGoogle Scholar
  18. 18.
    Kobayashi M, Itoi E, Minagawa H, Miyakoshi N, Takahashi S, Tuoheti Y, Okada K, Shimada Y. Expression of growth factors in the early phase of supraspinatus tendon healing in rabbits. J Shoulder Elb Surg. 2006;15:371–7.CrossRefGoogle Scholar
  19. 19.
    Molloy T, Wang Y, Murrell G. The roles of growth factors in tendon and ligament healing. Sports Med. 2003;33:381–94.CrossRefGoogle Scholar
  20. 20.
    Würgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ. Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elb Surg. 2007;16:S198–203.CrossRefGoogle Scholar
  21. 21.
    Batten ML, Hansen JC, Dahners LE. Influence of dosage and timing of application of platelet-derived growth factor on early healing of the rat medial collateral ligament. J Orthop Res. 1996;14:736–41.CrossRefGoogle Scholar
  22. 22.
    Lee J, Harwood FL, Akeson WH, Amiel D. Growth factor expression in healing rabbit medial collateral and anterior cruciate ligaments. Iowa Orthop J. 1998;18:19–25.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Dohan Ehrenfest DM, Rasmusson L, Albrektsson T. Classification of platelet concentrates: from pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF). Trends Biotechnol. 2009;27:158–67.CrossRefGoogle Scholar
  24. 24.
    Gobbi A, Whyte GP. Emerging orthobiologic approaches to ligament injury. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 313–24.CrossRefGoogle Scholar
  25. 25.
    Whyte GP, Gobbi A, Lane JG (2018) The role of orthobiologics in return to play. Return to play in football Springer, Berlin, Heidelberg, pp 273–282.CrossRefGoogle Scholar
  26. 26.
    Aspenberg P, Forslund C. Enhanced tendon healing with GDF 5 and 6. Acta Orthop Scand. 1999;70:51–4.CrossRefGoogle Scholar
  27. 27.
    Marui T, Niyibizi C, Georgescu HI, Cao M, Kavalkovich KW, Levine RE, Woo SL. Effect of growth factors on matrix synthesis by ligament fibroblasts. J Orthop Res. 1997;15:18–23.CrossRefGoogle Scholar
  28. 28.
    Kobayashi D, Kurosaka M, Yoshiya S, Mizuno K. Effect of basic fibroblast growth factor on the healing of defects in the canine anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997;5:189–94.CrossRefGoogle Scholar
  29. 29.
    LaPrade RF, Goodrich LR, Phillips J, Dornan GJ, Turnbull TL, Hawes ML, Dahl KD, Coggins AN, Kisiday J, Frisbie D, Chahla J. Use of platelet-rich plasma immediately after an injury did not improve ligament healing, and increasing platelet concentrations was detrimental in an in vivo animal model. Am J Sport Med. 2018;46:702–12.CrossRefGoogle Scholar
  30. 30.
    Gobbi A, de Girolamo L, Whyte GP, Sciarretta FV. Clinical applications of adipose tissue-derived stem cells. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 553–9.CrossRefGoogle Scholar
  31. 31.
    Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-step cartilage repair with bone marrow aspirate concentrated cells and collagen matrix in full-thickness knee cartilage lesions: results at 2-year follow-up. Cartilage. 2011;2:286–99.CrossRefGoogle Scholar
  32. 32.
    Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25:2494–501.CrossRefGoogle Scholar
  33. 33.
    Gobbi A, Espregueira-Mendes J, Karahan M, Cohen M, Whyte GP. Osteochondritis dissecans of the knee in football players. In: Injuries and health problems in football. Berlin, Heidelberg: Springer; 2017. p. 189–200.CrossRefGoogle Scholar
  34. 34.
    Gobbi A, Whyte GP. Osteochondritis dissecans: pathoanatomy, classification, and advances in biologic surgical treatment. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 489–501.CrossRefGoogle Scholar
  35. 35.
    Whyte GP, Gobbi A. Biologic knee Arthroplasty for cartilage injury and early osteoarthritis. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 517–25.CrossRefGoogle Scholar
  36. 36.
    Steinert AF, Kunz M, Prager P, Barthel T, Jakob F, Nöth U, Murray MM, Evans CH, Porter RM. Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. Tissue Eng Part A. 2011;17:1375–88.CrossRefGoogle Scholar
  37. 37.
    Centeno CJ, Pitts J, Al-Sayegh H, Freeman MD. Anterior cruciate ligament tears treated with percutaneous injection of autologous bone marrow nucleated cells: a case series. J Pain Res. 2015;8:437–47.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu Y, Ramanath HS, Wang D-A. Tendon tissue engineering using scaffold enhancing strategies. Trends Biotechnol. 2008;26:201–9.CrossRefGoogle Scholar
  39. 39.
    Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44:2846–54.CrossRefGoogle Scholar
  40. 40.
    Sadlik B, Gobbi A, Puszkarz M, Klon W, Whyte GP. Biologic inlay osteochondral reconstruction: arthroscopic one-step osteochondral lesion repair in the knee using morselized bone grafting and hyaluronic acid-based scaffold embedded with bone marrow aspirate concentrate. Arthrosc Tech. 2017;6:e383–9.CrossRefGoogle Scholar
  41. 41.
    Sadlik B, Kolodziej L, Puszkarz M, Laprus H, Mojzesz M, Whyte GP. Surgical repair of osteochondral lesions of the talus using biologic inlay osteochondral reconstruction: clinical outcomes after treatment using a medial malleolar osteotomy approach compared to an arthroscopically-assisted approach. Foot Ankle Surg. 2018;Google Scholar
  42. 42.
    Whyte GP, Gobbi A, Sadlik B. Dry arthroscopic single-stage cartilage repair of the knee using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells. Arthrosc Tech. 2016;5:e913–8.CrossRefGoogle Scholar
  43. 43.
    Noyes FR, Mooar LA, Moorman CT, McGinniss GH. Partial tears of the anterior cruciate ligament. Progression to complete ligament deficiency. J Bone Joint Surg Br. 1989;71:825–33.CrossRefGoogle Scholar
  44. 44.
    Strand T, Mølster A, Hordvik M, Krukhaug Y. Long-term follow-up after primary repair of the anterior cruciate ligament: clinical and radiological evaluation 15–23 years postoperatively. Arch Orthop Trauma Surg. 2005;125:217–21.CrossRefGoogle Scholar
  45. 45.
    Taylor DC, Posner M, Curl WW, Feagin JA. Isolated tears of the anterior cruciate ligament: over 30-year follow-up of patients treated with arthrotomy and primary repair. Am J Sports Med. 2009;37:65–71.CrossRefGoogle Scholar
  46. 46.
    Feagin JA, Curl WW. Isolated tear of the anterior cruciate ligament: five-year follow-up study. J Orthop Sport Phys Ther. 1990;12:232–6.CrossRefGoogle Scholar
  47. 47.
    Liu C-F, Aschbacher-Smith L, Barthelery NJ, Dyment N, Butler D, Wylie C. What we should know before using tissue engineering techniques to repair injured tendons: a developmental biology perspective. Tissue Eng Part B Rev. 2011;17:165–76.CrossRefGoogle Scholar
  48. 48.
    Gobbi A, Bathan L, Boldrini L. Primary repair combined with bone marrow stimulation in acute anterior cruciate ligament lesions: results in a group of athletes. Am J Sports Med. 2009;37:571–8.CrossRefGoogle Scholar
  49. 49.
    Kaplan N, Wickiewicz TL, Warren RF. Primary surgical treatment of anterior cruciate ligament ruptures. A long-term follow-up study. Am J Sports Med. 1990;18:354–8.CrossRefGoogle Scholar
  50. 50.
    Sherman MF, Lieber L, Bonamo JR, Podesta L, Reiter I. The long-term followup of primary anterior cruciate ligament repair. Defining a rationale for augmentation. Am J Sports Med. 1991;19:243–55.CrossRefGoogle Scholar
  51. 51.
    Steadman JR, Cameron-Donaldson ML, Briggs KK, Rodkey WG. A minimally invasive technique (“healing response”) to treat proximal ACL injuries in skeletally immature athletes. J Knee Surg. 2006;19:8–13.CrossRefGoogle Scholar
  52. 52.
    Steadman JR, Rodkey WG. Role of primary anterior cruciate ligament repair with or without augmentation. Clin Sports Med. 1993;12:685–95.PubMedGoogle Scholar
  53. 53.
    Steadman JR, Matheny LM, Briggs KK, Rodkey WG, Carreira DS. Outcomes following healing response in older, active patients: a primary anterior cruciate ligament repair technique. J Knee Surg. 2012;25:255–60.CrossRefGoogle Scholar
  54. 54.
    Gobbi A, Whyte GP. Biological augmentation in acute ACL repair. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 325–35.CrossRefGoogle Scholar
  55. 55.
    Gobbi A, Whyte GP, Karnatzikos G. Acute ACL rupture: a biological approach through primary ACL repair and augmentation with bone marrow stimulation and growth factor injection. In: Controversies in the technical aspects of ACL reconstruction. Berlin, Heidelberg: Springer; 2017. p. 135–44.CrossRefGoogle Scholar
  56. 56.
    Whyte GP, Gobbi A, Szwedowski D. Partial anterior cruciate ligament lesions: a biological approach to repair. In: Bio-orthopaedics. Berlin, Heidelberg: Springer; 2017. p. 665–70.CrossRefGoogle Scholar
  57. 57.
    Gobbi A, Karnatzikos G, Sankineani SR, Petrera M. Biological augmentation of ACL refixation in partial lesions in a group of athletes: results at the 5-year follow-up. Tech Orthop. 2013;28:180–4.CrossRefGoogle Scholar

Copyright information

© ISAKOS 2019

Authors and Affiliations

  • Graeme P. Whyte
    • 1
    • 2
    • 3
  • Ignacio Dallo
    • 4
  • Katarzyna Herman
    • 1
  • Alberto Gobbi
    • 1
    Email author
  1. 1.Orthopaedic Arthroscopic Surgery International (OASI) Bioresearch FoundationMilanItaly
  2. 2.Weill Medical CollegeCornell UniversityNew YorkUSA
  3. 3.New York Presbyterian Hospital/QueensNew YorkUSA
  4. 4.Unit of Regenerative Therapy and Arthroscopic Surgery, Sanatorio GaraySanta FeArgentina

Personalised recommendations