Skip to main content

Schutz vor Biofouling

Elektrochemische sowie Anti-Haft-Technologien zum Schutz von Schiffsrümpfen und Membranmodulen vor Biofouling

  • Chapter
Biologische Transformation

Zusammenfassung

Biofouling gehört zu den Schlüsselproblemen vieler technischer Systeme. Es beschwert Schiffe, verstopft Filtrationsmodule zur Wasseraufbereitung oder verursacht hygienische Probleme in klinischen Umgebungen. Am Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS wurden materialwissenschaftliche Lösungen entwickelt, um die Adhäsion von Foulingbildnern zu verhindern. Ein elektrisch leitfähiges Lacksystem, auf Schiffe aufgetragen, hält die Oberflächen über lange Zeit effektiv foulingfrei. Dünne hydrophile Schichten auf Komponenten von Filtrationsmodulen vermindern die Anlagerung von Mikroorganismen und können so zur Steigerung der Effizienz und Energieeinsparung beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Research 43:338–348

    Google Scholar 

  2. Araújo PA, Miller DJ, Correia PB, van Loosdrecht MCM, Kruithof JC, Freeman BD, Paul DR, Vrouwenvelder JS (2012) Impact of feed spacer and membrane modification by hydrophilic, bactericidal and biocidal coating on biofouling control. Desalination 295:1–10

    Google Scholar 

  3. Baker RW (2012) Membrane Technology and Applications. Wiley, Hoboken

    Google Scholar 

  4. Boks NP, Norde W, Mei HCd, Busscher HJ (2008) Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology 154:3122–3133

    Google Scholar 

  5. Bryers JD (1982) Processes governing primary biofilm formation. Biotechnology and Bioengineering 24:2451–2476

    Google Scholar 

  6. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nature Communications 2:244

    Google Scholar 

  7. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial Biofilms. Annual Reviews of Microbiology 49:711–745

    Google Scholar 

  8. Dafforn KA, Lewis JA, Johnston EL (2011) Antifouling strategies: History and regulation, ecological impacts and mitigation. Marine Pollution Bulletin 62(3):453–465

    Google Scholar 

  9. GWI DesalData with the International Desalination Association (2017) 30th Worldwide Desalting Inventory

    Google Scholar 

  10. l24256 – EN (2003) Schutz des Meeres und der Lebensmittelkette vor den Auswirkungen zinnorganischer Verbindungen, Verordnung (EG) Nr. 782/2003 des Europäischen Parlaments und des Rates vom 14. April 2003 über das Verbot zinnorganischer Verbindungen auf Schiffen, ABl. L 115:1–11

    Google Scholar 

  11. Flemming HC (1997) Reverse osmosis membrane biofouling. Experimental Thermal and Fluid Science 14:382–391

    Google Scholar 

  12. Flemming HC, Wingender J (2001) Biofilme – die bevorzugte Lebensform der Bakterien. Biologie in unserer Zeit 3:169–180

    Google Scholar 

  13. Frost & Sullivan (2017) Advances in Antifouling Coatings. Frost and Sullivan, Product code 566808

    Google Scholar 

  14. Gittens JE, Smith TJ, Suleiman R, Akid R (2013) Current and emerging environmentally-friendly systems for fouling control in the marine environment. Biotechnology Advances 31: 1738–1753

    Google Scholar 

  15. Grand View Research (2017) Water Desalination Equipment Market Analysis By Technology (RO, MSF, MED), By Application (Municipal, Industrial), By Source (Sea, Brackish, River), By Region, And Segment Forecasts, 2014–2025. https://www.grand-viewresearch.com/industry-analysis/water-desalination-equipment-market. Zugegriffen: 21.09.2018

  16. Hauner IM, Deblais A, Beattie JK, Kellay H, Bonn D (2017) The Dynamic Surface Tension of Water. Journal of Physical Chemistry Letters 8:1599−1603

    Google Scholar 

  17. Hausman R, Escobar IC (2013) A Comparison of Silver- and Copper-Charged Polypropylene Feed Spacers for Biofouling Control. Journal of Applied Polymer Science 128:1706–1714

    Google Scholar 

  18. Hexa Research (2017) Water Desalination Market Size and Forecast, By Technology (Reverse Osmosis, Multi-Stage Filtration, Multi-Effect Distillation), By Source (Seawater, Brackish Water, Wastewater), And Trend Analysis, 2014–2025. https://www.hexare-search.com/research-report/water-desalination-market. Zugegriffen: 21.09.2018

  19. Laidlaw FB (1952) The History of the Prevention of Fouling. United States Naval Institute Proceedings Magazine 78/7/593:211–223

    Google Scholar 

  20. Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1989) Bacterial adhesion: A physicochemical approach. Microbial Ecology 17:1–15

    Google Scholar 

  21. Markets and Markets (2016) Antifouling Paints and Coatings Market by Type (Copper-Based, Self-Polishing, Hybrid, Others), Application (Shipping Vessels, Drilling Rigs & Production Platforms, Others), Region (APAC, Europe, North America, MEA, Latin America) – Global Forecast to 2021

    Google Scholar 

  22. Omae I (2003) Organotin antifouling paints and their alternatives. Applied Organometallic Chemistry 17:81–105

    Google Scholar 

  23. Orbis Research (2018) Global Water Desalination Market: 2018-2025 Key Industry Insights, Segments, Opportunities, and Forecasts

    Google Scholar 

  24. Research and Markets (2017) Reverse Osmosis Membrane Market by Material Type, by End-Use Industry & Application, and by Region - Global Trends & Forecast to 2021

    Google Scholar 

  25. Ronen A, Semiat R, Dosoretz CG (2013) Impact of ZnO embedded feed spacer on biofilm development in membrane systems. Water Research 47:6628–6638

    Google Scholar 

  26. Ronen A, Lerman S, Ramon GC, Dosoretz CG (2015) Experimental characterization and numerical simulation of the anti-biofouling activity of nanosilver-modified feed spacers in membrane filtration. Journal of Membrane Science 475:320–329

    Google Scholar 

  27. Satpathy KK, Mohanty AK, Sahu G, Biswas S, Prasad MVR, Slvanayagam M (xxx) Biofouling and its Control in Seawater Cooled Power Plant Cooling Water System - A Review. doi:10.5772/9912

  28. Shelby I, Bartels CR (2008) Cross-flow filtration apparatus with biocidal feed spacer. WO Application WO2009154784A8

    Google Scholar 

  29. Stoodley P, deBeer D, Lappin-Scott HM (1997) Influence of Electric Fields and pH on Biofilm Structure as Related to the Bioelectric Effect. Antimicrobial Agents and Chemotherapy 41:1876–1879

    Google Scholar 

  30. Technavio (2016) Global Antifouling Coatings Market 2016–2020

    Google Scholar 

  31. Thomas KV, Fileman TW, Readman JW, Waldock MJ (2001) Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Marine Pollution Bulletin 42/8:677–688

    Google Scholar 

  32. Wahl M (1989) Marine epibiosis. I. Fouling and antifouling: some basic aspects. Marine Ecology Progress Series 58:175–189

    Google Scholar 

  33. Wake H, Takahashi H, Takimoto T, Takayanagi H, Ozawa K, Kadoi H, Okochi M, Matsunaga T (2006) Development of an Electrochemical Antifouling System for Seawater Cooling Pipelines of Power Plants Using Titanium. Biotechnology and Bioengineering 95:468–473

    Google Scholar 

  34. Wang J, Pan CJ, Huang N, Sun H, Yang P, Leng YX, Chen JY, Wan GJ, Chu PK (2005) Surface characterization and blood compatibility of poly(ethylene terephthalate) modified by plasma surface grafting. Surface and Coatings Technology 196:307–311

    Google Scholar 

  35. Yebra DM, Kiil S, Dam-Johansen K (2004) Antifouling technology—past, present and future steps towards efficient and environmentally friendly antifouling coatings. Progress in Organic Coatings 50:75–104

    Google Scholar 

  36. Zhao C, Li L, Yu Q, Zheng J (2011) Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces. Langmuir 27:4906–4913

    Google Scholar 

  37. Zion Market Research (2016) Antifouling Paints & Coating Market (Self-Polishing Copolymer, Copper-Based Antifouling Paints & Coatings, Hybrid Antifouling Paints & Coatings and Others) for Mooring Lines, Shipping Vessels, Fishing Boats, Drilling Rigs & Production Platforms and Inland Waterways Transport: Global Industry Perspective, Comprehensive Analysis, Size, Share, Growth, Segment, Trends and Forecast 2015–2021

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Wehrspohn, R.B., Hirsch, U. (2019). Schutz vor Biofouling. In: Neugebauer, R. (eds) Biologische Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58243-5_16

Download citation

Publish with us

Policies and ethics