Skip to main content

Angewandte Biochemie V: Arteriengesundheit

  • Chapter
  • First Online:
  • 3222 Accesses

Zusammenfassung

Eine Erkenntnis des berühmten Pathologens Rudolf Virchow ist: Der Mensch ist so alt wie seine Gefäße. Herz-Kreislauf-Erkrankungen sind Todesursache Nummer eins in der deutschen Gesellschaft. Jeder Zweite stirbt daran. In vielen westlichen Ländern ist es genauso: Eine US-Studie mit fast 7000 Personen ergab, dass fast jeder Zweite ein mittleres bis hohes Risiko für Herz-Kreislauf-Erkrankungen hat. Auf der anderen Seite finden sich Naturvölker wie die Tsimane, die Wissenschaftler als „Menschen mit den gesündesten Arterien“ bezeichneten. Es zeigt sich, dass der Lebensstil maßgeblichen Anteil daran hat, wie gesund die Gefäße bleiben. Das von dem Nobelpreisträger Louis Ignarro näher beschriebene Gas Stickoxid spielt eine Hauptrolle bei der Gesunderhaltung der Gefäße. Adäquate Konzentrationen dieses Stoffes halten die Gefäße gesund – ein ungesunder Lebensstil senkt die Stickoxidwerte aber. Neuere Untersuchungen zeigen zudem, dass Stickoxid nicht nur die Gesundheit der Gefäße reguliert, sondern auch die Funktionsfähigkeit des Energiestoffwechsels. Damit schützt Stickoxid auch vor Insulinresistenz und Co.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  • Andrukhova O et al (2013) Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol 28(1):53–64

    Article  Google Scholar 

  • Antoniades C (2006) 5-Methyltetrahydrofolate rapidly improves endothelial function and decreases superoxide production in human vessels: effects on vascular tetrahydrobiopterin availability and endothelial nitric oxide synthase coupling. Circulation 114(11):1193–1201

    Article  Google Scholar 

  • Baker TA, Milstien S, Katusic ZS (2001) Effect of vitamin C on the availability of tetrahydrobiopterin in human endothelial cells. J Cardiovasc Pharmacol 37(3):333–338

    Article  Google Scholar 

  • Basralı F et al (2015) Effect of magnesium supplementation on blood pressure and vascular reactivity in nitric oxide synthase inhibition-induced hypertension model. Clin Exp Hypertens 37(8):633–642

    Article  Google Scholar 

  • Davis ME et al (2004) Shear stress regulates endothelial nitric-oxide synthase promoter activity through nuclear factor κB binding. J Biol Chem 279(1):163–168

    Article  Google Scholar 

  • Duplain H et al (2001) Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation 104(3):342–345

    Article  Google Scholar 

  • Edwards JG et al (2008) Exercise improves endothelial nitric oxide synthase (eNOS) dimerization in diabetic rats. FASEB J 22(1):1235.3

    Google Scholar 

  • El-Bassossy HM et al (2013) Arginase inhibition alleviates hypertension in the metabolic syndrome. Br J Pharmacol 169(3):693–703

    Article  Google Scholar 

  • Farah C et al (2013) Exercise-induced cardioprotection: a role for eNOS uncoupling and NO metabolites. Basic Res Cardiol 108(6):1–13

    Article  Google Scholar 

  • Fisslthaler B et al (2003) Insulin enhances the expression of the endothelial nitric oxide synthase in native endothelial cells: a dual role for Akt and AP-1. Nitric Oxide 8(4):253–261

    Article  Google Scholar 

  • Friedman-Rudovsky J (2012) In the Bolivian Amazon, a yardstick for modern health. https://www.nytimes.com/2012/09/25/health/in-the-bolivian-amazon-a-yardstick-for-modern-health.html. Zugegriffen am 02.08.2018

  • Fulton D (2009) Mechanisms of vascular insulin resistance: a substitute act? Circ Res 104(9):1035–1037

    Article  Google Scholar 

  • Gad M (2010) Anti-aging effects of l-arginine. J Adv Res 1(3):169–177

    Article  Google Scholar 

  • Gómez-Zamudio JH et al (2015) Vascular endothelial function is improved by oral glycine treatment in aged rats. Can J Physiol Pharmacol 93(6):465–473

    Article  Google Scholar 

  • Guarente L (2013) Calorie restriction and sirtuins revisited. Genes Dev 27(19):2072–2085

    Article  Google Scholar 

  • Hayashi T, Juliet P, Matsui-Hirai H et al (2005) L-citrulline and L-arginine supplementation retards the progression of high-cholesterol-diet-induced atherosclerosis in rabbits. Proc Natl Acad Sci U S A 102(38):13681–13686

    Article  Google Scholar 

  • Hiroi Y et al (2006) Rapid nongenomic actions of thyroid hormone. Proc Natl Acad Sci U S A 103(38):14104–14109

    Article  Google Scholar 

  • Hyndman ME et al (2002) Interaction of 5-methyltetrahydrofolate and tetrahydrobiopterin on endothelial function. Am J Physiol Heart Circ Physiol 282(6):H2167–H2172

    Article  Google Scholar 

  • Kaplan H, Thompson R, Trumble B et al (2017) Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389(10080):1730–1739

    Article  Google Scholar 

  • Kapur S et al (1997) Expression of nitric oxide synthase in skeletal muscle: a novel role for nitric oxide as a modulator of insulin action. Diabetes 46(11):1691–1700

    Article  Google Scholar 

  • Kashyap S, Roman L, Lamont J et al (2005) Insulin resistance is associated with impaired nitric oxide synthase activity in skeletal muscle of type 2 diabetic subjects. J Clin Endocrinol Metab 90(2):1100–1105

    Article  Google Scholar 

  • Le Gouill E et al (2007) Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial β-oxidation. Diabetes 56(11):2690–2696

    Article  Google Scholar 

  • Lindeberg S et al (1994) Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischaemic heart disease: the Kitava study. J Intern Med 236(3):331–340

    Article  Google Scholar 

  • Lira VA et al (2010) Nitric oxide and AMPK cooperatively regulate PGC-1α in skeletal muscle cells. J Physiol 588(18):3551–3566

    Article  Google Scholar 

  • Lu D, Kassab GS (2011) Role of shear stress and stretch in vascular mechanobiology. J Royal Soc Interface 8(63):1379–1385

    Article  Google Scholar 

  • Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167

    Article  Google Scholar 

  • Momken I et al (2002) Endothelial nitric oxide synthase (NOS) deficiency affects energy metabolism pattern in murine oxidative skeletal muscle. Biochem J 368:341–347

    Article  Google Scholar 

  • Mortensen A, Lykkesfeldt J (2014) Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide 36:51–57

    Article  Google Scholar 

  • Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14(1):5–12

    Article  Google Scholar 

  • Nisoli E et al (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299(5608):896–899

    Article  Google Scholar 

  • Nisoli E et al (2004) Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals. Proc Natl Acad Sci U S A 101(47):16507–16512

    Article  Google Scholar 

  • Nisoli E et al (2005) Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310(5746):314–317

    Article  Google Scholar 

  • Obradovic M, Gluvic Z, Sudar-Milovanovic E et al (2016) Nitric oxide as a marker for levo-thyroxine therapy in subclinical hypothyroid patients. Curr Vasc Pharmacol 14(3):266–270

    Article  Google Scholar 

  • Ramaswami G et al (2004) Curcumin blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 40(6):1216–1222

    Article  Google Scholar 

  • Ritchie S et al (2010) Insulin-stimulated phosphorylation of endothelial nitric oxide synthase at serine-615 contributes to nitric oxide synthesis. Biochem J 426:85–90

    Article  Google Scholar 

  • Roberts LD (2015) Does inorganic nitrate say NO to obesity by browning white adipose tissue? Adipocyte 4(4):311–314

    Article  Google Scholar 

  • Sansbury BE, Hill BG (2014) Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 73:383–399

    Article  Google Scholar 

  • Sverdlov AL et al (2014) Aging of the nitric oxide system: are we as old as our NO? J Am Heart Assoc 3(4):e000973

    Article  Google Scholar 

  • Tanabe T et al (2003) Exercise training improves ageing-induced decrease in eNOS expression of the aorta. Acta Physiol Scand 178(1):3–10

    Article  Google Scholar 

  • Tomat AL et al (2005) Moderate zinc deficiency influences arterial blood pressure and vascular nitric oxide pathway in growing rats. Pediatr Res 58(4):672–676

    Article  Google Scholar 

  • Ungvari Z et al (2008) Mechanisms underlying caloric restriction and lifespan regulation implications for vascular aging. Circ Res 102(5):519–528

    Article  Google Scholar 

  • Valerio A, D’Antona G, Nisoli E (2011) Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging 3(5):464–478

    Article  Google Scholar 

  • de Waard MC et al (2010) Beneficial effects of exercise training after myocardial infarction require full eNOS expression. J Mol Cell Cardiol 48(6):1041–1049

    Article  Google Scholar 

  • Yang A-L et al (2002) Chronic exercise increases both inducible and endothelial nitric oxide synthase gene expression in endothelial cells of rat aorta. J Biomed Sci 9(2):149–155

    Article  Google Scholar 

  • Zhang X et al (2000) Effects of homocysteine on endothelial nitric oxide production. Am J Physiol Renal Physiol 279(4):F671–F678

    Article  Google Scholar 

  • Zhao Z-W et al (2011) Ameliorative effect of astaxanthin on endothelial dysfunction in streptozotocin-induced diabetes in male rats. Arzneimittelforschung 61(04):239–246

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michalk, C. (2019). Angewandte Biochemie V: Arteriengesundheit. In: Gesundheit optimieren – Leistungsfähigkeit steigern. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58231-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58231-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58230-5

  • Online ISBN: 978-3-662-58231-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics