Skip to main content

FAUST: MATERIAL CHARACTERIZATION OF LOW-COST FOAM MATERIALS UNDER REAL BOUNDARY PROCESS CONDITIONS FOR RTM LARGE-SCALE PRODUCTION

  • Conference paper
  • First Online:
Technologies for economical and functional lightweight design

Abstract

The Resin Transfer Molding (RTM) process is the first choice for large-scale production of continuous fiber reinforced composite structures due to its capabilities of industrialization and automation at low price. However, the process is currently limited to monolithic structures. Low-cost and yet powerful foam materials do not seem to be compatible with the manufacturing conditions of the RTM process. Available measuring methods do not sufficiently analyze the foam behavior during processing, so that expensive preliminary manufacturing tests are necessary. The use of high-performance foam material, as known in aerospace applications, is not an alternative due to their high price.

In order to enable the use of low-cost foam materials, it is important to match material and process. For this reason, a simple but highly efficient method based on ultrasonic sensors has been developed and patented by the Institute of Composite Structures and Adaptive Systems at DLR. The Foam Analysis Ultrasound System (FAUSt) enables a quantified property description of foam materials under realistic manufacturing conditions for the first time. Without contact to the sample the time-dependent deformation of foam materials depending on temperature and pressure can be determined. In addition to the material characterization itself, the measurement results benefit primarily the development of efficient, material-adapted impregnation strategies. Also process parameter identification for ideal processing and quality assurance is supported. Furthermore, the data can be used for numerical simulation methods in the early development process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Vohrer, C. David, M. Ruff, and H. E. Friedrich, “Funktionsintegrierte Faserverbundstrukturen im Fahrzeugbau”, in Tagungsband LLC 2017, 2017, pp. 198–208.

    Google Scholar 

  2. G. Kopp, M. Münster, M. Kriescher, M. Ruff, S. Vohrer, and G. Kopp, “Next Generation Car: vehicle concepts, vehicle architectures and structural design for future road mobility”, in 7. Tagung für neue Fahrzeug- und Werkstoffkonzepte, 2017.

    Google Scholar 

  3. S. Vohrer, C. David, and M. Ruff, “Fiber reinforced composite structures in the Next-Generation-Car: Interurban Vehicle (NGC-IUV)”, Carbon Composites Magazin, no. 4/2016, p. 42, Nov-2016.

    Google Scholar 

  4. S. Torstrick-v.d.Lieth, M. Wiedemann, and J. Stüve, “Is Carbon Already Obsolete for Non-Super Sports Cars?”, Dec. 2017.

    Google Scholar 

  5. R. Kötte, “Der Resin-Transfer-Molding-Prozess: Analyse eines Harzinjektionsverfahrens”, RWTH Aachen, 1991.

    Google Scholar 

  6. S. Laurenzi and M. Marchetti, “Advanced Composite Materials by Resin Transfer Molding for Aerospace Applications”, Compos. Their Prop., pp. 197–226, 2012.

    Google Scholar 

  7. S. Schmidhuber and S. Fenske, “Die ganze Palette des Leichtbaus”, K Magazin, 2016.

    Google Scholar 

  8. C. D. Rudd, A. C. Long, K. . Kendall, and C. G. . Magin, Liquid moulding technologies, vol. 1. 1997.

    Google Scholar 

  9. T. M. Kruckenberg and R. Paton, Resin Transfer Moulding for Aerospace Structures. Dordrecht: Springer Netherlands, 1998.

    Google Scholar 

  10. D. Bertling, R. Kaps, and E. Mulugeta, “Analysis of dry-spot behavior in the pressure field of a liquid composite molding process”, CEAS Aeronaut. J., vol. 7, no. 4, pp. 577–585, Dec. 2016.

    Google Scholar 

  11. L. Herbeck, M. Kleineberg, and C. Schöppinger, “Foam Cores in RTM Structures, Manufacturing Aid of High-Performance Sandwich?”, in Go For the Best Through Advanced Materials & Processes, Page Bros., Norwich, UK, 2002, pp. 515–525.

    Google Scholar 

  12. DIAB, “DIAB Guide to Core and Sandwich”, p. 48, 2012.

    Google Scholar 

  13. A. C. Garay, J. A. Souza, and S. C. Amico, “Evaluation of mechanical properties of sandwich structures with polyethylene terephthalate and polyvinyl chloride core”, J. Sandw. Struct. Mater., vol. 18, no. 2, pp. 229–241, 2016.

    Google Scholar 

  14. M. Schön et al., “Leichtbau durch funktionsintegrierende Strukturen in Multi Material Design – hybride Sandwichbauweisen für Schienenfahrzeuge : PURtrain ; Abschlussbericht des Forschungsvorhabens”, 2012.

    Google Scholar 

  15. F. C. Campbell, “The Case Against Honeycomb Core”, in 49th International SAMPE symposium and exhibition, 2004, p. 301.

    Google Scholar 

  16. J. Grünewald, P. Parlevliet, and V. Altstädt, “Manufacturing of thermoplastic composite sandwich structures”, J. Thermoplast. Compos. Mater., vol. 30, no. 4, pp. 437–464, Apr. 2017.

    Google Scholar 

  17. M. Flemming, G. Ziegmann, and S. Roth, Faserverbundbauweisen – Fertigungsverfahren mit duroplastischer Matrix. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999.

    Google Scholar 

  18. J. Pflug, “Sandwich Materials Selection Charts”, J. Sandw. Struct. Mater., vol. 8, no. 5, pp. 407–421, Sep. 2006.

    Google Scholar 

  19. A Composites, “Data Sheet: Airex T92”, p. 3, 2017.

    Google Scholar 

  20. G. Menges, E. Haberstroh, W. Michaeli, and E. Schmachtenberg, Menges Werkstoffkunde Kunststoffe. München: Carl Hanser Verlag GmbH & Co. KG, 2011.

    Google Scholar 

  21. W. Grellmann and S. Seidler, Kunststoffprüfung. München: Carl Hanser Verlag GmbH & Co. KG, 2015.

    Google Scholar 

  22. K. Bungardt et al., Eds., Die Prüfung der metallischen Werkstoffe. Berlin, Heidelberg: Springer Berlin Heidelberg, 1939.

    Google Scholar 

  23. C. Ferreira, “Measurement of the Nonuniform Thermal Expansion Coefficient of a PVC Foam Core by Speckle Interferometry – Influence on the Mechanical Behavior of Sandwich Structures”, J. Cell. Plast., vol. 42, no. 5, pp. 393–404, 2006.

    Google Scholar 

  24. J. Scherble and T. Jahn, “New Rohacell Development For Resin Infusion Processes”, in Sandwich Structures 7: Advancing with Sandwich Structures and Materials, 2005, pp. 753–761.

    Google Scholar 

  25. P. Viot, “Hydrostatic compression on polypropylene foam”, Int. J. Impact Eng., vol. 36, no. 7, pp. 975–989, Jul. 2009.

    Google Scholar 

  26. O. Almanza, Y. Masso-Moreu, N. J. Mills, and M. A. Rodrícuez-PÉREZ, “Thermal expansion coefficient and bulk modulus of polyethylene closed-cell foams”, J. Polym. Sci. Part B Polym. Phys., vol. 42, no. 20, pp. 3741–3749, 2004.

    Google Scholar 

  27. U. Lang, “Rohacell – High performance foam cores for aircraft application”. Evonik, p. 91, 2011.

    Google Scholar 

  28. E. Kappel, “Spring-in of curved CFRP/foam-core sandwich structures”, Compos. Struct., vol. 128, pp. 155–164, Sep. 2015.

    Google Scholar 

  29. D. Q. Deng and L. Xu, “Measurements of thermal expansion coefficient of phenolic foam at low temperatures”, Cryogenics (Guildf)., vol. 43, no. 8, pp. 465–468, Aug. 2003.

    Google Scholar 

  30. J. Krautkrämer and H. Krautkrämer, Werkstoffprüfung mit Ultraschall. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.

    Google Scholar 

  31. N. Liebers, F. Raddatz, and F. Schadow, “EFFECTIVE AND FLEXIBLE ULTRASOUND SENSORS FOR CURE MONITORING FOR INDUSTRIAL COMPOSITE PRODUCTION”, in Deutscher Luft- und Raumfahrtkongress (DGLR), 2012.

    Google Scholar 

  32. N. Liebers, F. Raddatz, and F. Schadow, “Überwachung eines Herstellungsprozesses”, 2013.

    Google Scholar 

  33. M. Kleineberg et al., “Fully controlled production environment for autoclave injection processes”, in Jec Europe Composites Show and Conference, 2015, pp. 1–32.

    Google Scholar 

  34. D. Bertling, N. Liebers, and M. Opitz, “Verfahren und Vorrichtung zur Analyse von Formkörpern als Komponenten für Faserverbundbauteile”, 2016.

    Google Scholar 

  35. T. Nörtershäuser and M. Opitz, “Entwicklung eines Messsystems zur Analyse von Formkörpern hinsichtlich der Verwendung in Resin Transfer Moulding Prozessen”, Hochschule Bonn-Rhein-Sieg, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Opitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Opitz, M., Bertling, D., Liebers, N. (2019). FAUST: MATERIAL CHARACTERIZATION OF LOW-COST FOAM MATERIALS UNDER REAL BOUNDARY PROCESS CONDITIONS FOR RTM LARGE-SCALE PRODUCTION. In: Dröder, K., Vietor, T. (eds) Technologies for economical and functional lightweight design. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58206-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58206-0_21

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58205-3

  • Online ISBN: 978-3-662-58206-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics