Skip to main content

Cognitive Systems and Robotics

Intelligent data utilization for autonomous systems

  • Chapter
Digital Transformation

Summary

Cognitive systems are able to monitor and analyze complex processes, which also provides them with the ability to make the right decisions in unplanned or unfamiliar situations. Fraunhofer experts are employing machine learning techniques to harness new cognitive functions for robots and automation solutions. To do this, they are equipping systems with technologies that are inspired by human abilities, or imitate and optimize them. This report describes these technologies, illustrates current example applications, and lays out scenarios for future areas of application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Sources and literature

  1. Bengio Y (2009) Learning Deep Architectures for AI, Foundations and Trends in Machine Learning 2 (1) 1-127

    Article  MathSciNet  Google Scholar 

  2. Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet Classification with Deep Convolutional Neural Networks, in Proc. NIPS

    Google Scholar 

  3. Hinton G, Deng L, Yu D, Dahl G, Mohamed A and Jaitly N (2012) Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups, IEEE Signal Processing Magazine 29 (6) 82-97

    Article  Google Scholar 

  4. Mikolov T, Sutskever I, Chen K, Corrado G and Dean J (2013) Distributed Representations of Words and Phrases and their Compositionality in Proc. NIPS

    Google Scholar 

  5. Levine S, Wagener N, Abbeel P (2015) Learning Contact-Rich Manipulation Skills with Guided Policy Search, Proc. IEEE ICRA

    Google Scholar 

  6. Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S (2017) Dermatologistlevel Classification of Skin Cancer with Deep Neural Networks, Nature 542 (7639) 115-118

    Article  Google Scholar 

  7. Silver D, Huang A, Maddison C, Guez A, Sifre L, van den Driesche G, Schrittwieser J (2016) „Mastering the Game of Go with Deep Neural Networks and Tree Search“ Nature 529 (7587) 484-489

    Article  Google Scholar 

  8. Moracik M, Schmidt M, Burch N, Lisy V, Morrill D, Bard N, Davis T, Waugh K, Johanson M and Bowling M (2017) DeepStack: Expert-level Artificial Intelligence in Heads-up No-limit Poker, Science 356 (6337) 508-513

    Article  MathSciNet  Google Scholar 

  9. Hornik K, Stinchcombe M, White H (1989) Multilayer Feedforward Networks Are Universal Approximators, Neural Networks 2 (5) 359-366

    Article  Google Scholar 

  10. Cybenko G (1989) Approximation by Superpositions of a Sigmoidal Function, Mathematics of Control, Signals and Systems 2 (4) 303-314

    Article  MathSciNet  Google Scholar 

  11. Rumelhart D, Hinton G and Williams R (1986) Learning Representations by Back- propagating Errors, Nature 323 (9) 533-536

    Article  Google Scholar 

  12. V. Vapnik and A. Chervonenkis (1971) On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities, Theory of Probability and its Applications 16 (2) 264-280

    Article  Google Scholar 

  13. Barker J, Bulin J, Hamaekers J, Mathias S, LC-GAP (2017) Localized Coulomb Descriptors for the Gaussian Approximation Potential, in Scientific Computing and Algorithms in Industrial Simulations, Griebel, Michael, Schüller, Anton, Schweitzer, Marc Alexander (eds.), Springer

    Google Scholar 

  14. Garcke J, Iza-Teran R, Prabakaran N (2016) Datenanalysemethoden zur Auswertung von Simulationsergebnissen im Crash und deren Abgleich mit dem Experiment, VDI-Tagung SIMVEC 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Cite this chapter

Bauckhage, C., Bauernhansl, T., Beyerer, J., Garcke, J. (2019). Cognitive Systems and Robotics. In: Neugebauer, R. (eds) Digital Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58134-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58134-6_14

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58133-9

  • Online ISBN: 978-3-662-58134-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics