Advertisement

Verdauung und Darmerkrankungen

  • Sepp FegerlEmail author
  • Henning Sartor
  • Alex Witasek
Chapter

Zusammenfassung

Das Verdauungssystem ist sehr komplex und wird durch viele Regelmechanismen gesteuert. Unsere hektische und maßlose Ernährungsweise überfordert die Verdauungsorgane und begünstigt Fehlverdauung in Form von Fäulnis und Gärung. Diese intestinale Autointoxikation ist einer der häufigsten Ursachen für Darmerkrankungen. Nach zuerst funktionellen Störungen des Darms kommt es dann zu morphologischen Veränderungen der Darmwand und des Mikrobioms. Das Leaky-Gut-Syndrom ist eine der Hauptursachen für die „silent inflammation“ mit all ihren Folgen, die praktisch alle Zivilisationserkrankungen fördert. Kohlenhydrat- und Fruktoseintoleranz, eine latente Gewebsazidose, Entzündungen, ein beeinträchtigter Tryptophanstoffwechsel, Antibiotikatherapien und vor allem eine falsche Ernährungsweise stören die Funktion des Darms, und beeinflussen die Psyche, das Schmerzempfinden und den Schlaf. Die Autophagie als wichtiges Zellentgiftungswerkzeug kann durch Kalorienrestriktion gefördert werden.

Literatur

Literatur zu Abschn. 6.1

  1. Buhner S, Li Q, Vignali S et al (2009) Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137(4):1425–1434CrossRefPubMedGoogle Scholar
  2. Coffey JC, O’Leary DP (2016) The mesentery: structure, function, and role in disease. Lancet Gastroenterol Hepatol 1:238–247CrossRefPubMedGoogle Scholar
  3. Hinghofer-Szalkay H (o. A.) Vorlesungsskriptum Physiologie. Med Uni Graz. http://physiologie.cc/IV.htm, http://physiologie.cc/IV.5.htm. Zugegriffen: 2. Jan. 2019
  4. Karamanolis G, Theofanidou I, Yiasemidou M et al (2008) A glass of water immediately increases gastric pH in healthy subjects. Dig Dis Sci 53:3128–3132CrossRefPubMedGoogle Scholar
  5. Kopic S, Geibel JP (2013) Gastric acid, calcium absorption, and their impact on bone health. Physiol Rev 93:189–268CrossRefPubMedGoogle Scholar
  6. Lam JR et al (2013) Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B12 deficiency. JAMA 310:2435–2442CrossRefPubMedGoogle Scholar
  7. Schwarz K (2010) Evidenzbasierter Einsatz von Protonenpumpeninhibitoren, Diplomarbeit Universität Wien. http://othes.univie.ac.at/11728/1/2010-10-22_0106969.pdf. Zugegriffen: 6. Okt. 2018
  8. Waring AJ, Drake MI, Schorath CJ et al (1996) Ascorbic acid and total vitamin C concentrations in plasma, gastric juice, and gastrointestinal mucosa: effects of gastritis and oral supplementation. Gut 38:171–176CrossRefPubMedPubMedCentralGoogle Scholar
  9. Weitensfelder W (2001) Vorlesung Funktionelle Anatomie – Physiologie, FH Technikum Kärnten. https://www.yumpu.com/de/document/view/29471451/w-weitensfelder-physiologie-und-medizinterminologie-sinnesorgane. Zugegriffen: 2. Jan. 2019

Literatur zu Abschn. 6.2

  1. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:2640–2644CrossRefGoogle Scholar
  2. Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476CrossRefPubMedGoogle Scholar
  3. Eckburg PB et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. https://www.ncbi.nlm.nih.gov/pubmed/15831718. Zugegriffen: 2. Jan. 2019CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gill SR et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://www.ncbi.nlm.nih.gov/pubmed/16741115. Zugegriffen: 2. Jan. 2019CrossRefPubMedPubMedCentralGoogle Scholar
  5. Haghikia A, Jörg S, Duscha A et al (2015) Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 44:951–953CrossRefGoogle Scholar
  6. Jasvinder C (2017) Hyperammonemia. http://emedicine.medscape.com/article/1174503-overview#a4. Zugegriffen: 6. Okt. 2018
  7. Prasad M, Wetzler G, Holtmann J et al (2016) Constipation, renovascular hypertension, and posterior reversible encephalopathy syndrome (PRES). Eur J Pediatr 175:421–425CrossRefPubMedGoogle Scholar
  8. Rakoff-Nahoum S et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118(2):229–241. https://www.cell.com/cell/fulltext/S0092-8674(04)00661-0?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867404006610%3Fshowall%3DDtru. Zugegriffen: 2. Jan. 2019
  9. Sho Kitamoto S, Nagao-Kitamoto H, Kuffa P, Kamada N (2015) Regulation of virulence: the rise and fall of gastrointestinal pathogens. J Gastroenterol 51:195–205CrossRefPubMedPubMedCentralGoogle Scholar
  10. Yu YN, Fang JY (2015) Gut microbiota and colorectal cancer. Gastrointest Tumors 2:26–32CrossRefPubMedPubMedCentralGoogle Scholar

Literatur zu Abschn. 6.3

  1. Babu PV et al (2013) Recent advances in understanding the anti-diabetic actions of dietary flavonoids. J Nutr Biochem 24(11):1777–1789CrossRefPubMedGoogle Scholar
  2. Belitz H-D, Grosch W, Schieberle P (2007) Lehrbuch der Lebensmittelchemie. Springer, BerlinGoogle Scholar
  3. Child BW (2016) Ehret, Arnold – Die schleimfreie Heilkost. https://de.scribd.com/doc/10036638/Ehret-Arnold-Die-Schleimfreie-Heilkost. Zugegriffen: 7. Okt. 2018
  4. David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563CrossRefPubMedGoogle Scholar
  5. de Vries MA et al (2014) The postprandial situation as a pro-inflammatory condition. Clin Investig Arterioscler 26(4):184–192.  https://doi.org/10.1016/j.arteri.2014.02.007CrossRefPubMedGoogle Scholar
  6. Falk Symposium Basel (2012) Microscopic Colitis – creating awareness for an underestimated disease. Falk Workshop, 03. Mai 2012, Basel. http://www.falk-foundation-symposia.org/symposia-and-workshops/2012/?PHPSESSID=169010d3925da532853a15ed410288d4. Zugegriffen: 2. Jan. 2019
  7. Fasano A (2011) Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev 91:151–175CrossRefPubMedGoogle Scholar
  8. Gibson PR, Shepherd SJ (2010) Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J Gastroenterol Hepatol 25(2):252–258CrossRefPubMedGoogle Scholar
  9. Hoffmann M, Wolf G, Staller B (1995) Redoxpotenziale in Lebensmitteln und deren Gesundheitsrelevanz für die Umweltmedizin. Kassenärztlichen Symposion 1995 „Ernährung und Gesundheit“, https://www.aend.de/article/776. Zugegriffen: 29. Sept. 2000
  10. Jäger S, Stange EF, Wehkamp J (2013) Inflammatory bowel disease: an impaired barrier disease. Langenbecks Arch Surg 398:1–12.  https://doi.org/10.1007/s00423-012-1030-9 Zugegriffen: 2. Jan. 2019CrossRefPubMedGoogle Scholar
  11. Kanner J, Selhub J, Shpaizer A et al (2017) Redox homeostasis in stomach medium by foods: the Postprandial Oxidative Stress Index (POSI) for balancing nutrition and human health. Redox Biol 12:929–936.  https://doi.org/10.1016/j.redox.2017.04.029CrossRefPubMedPubMedCentralGoogle Scholar
  12. Kreijs GJ (1980) Micoscopic colitis. Gastroenterology 78:264–271CrossRefGoogle Scholar
  13. Milan AM et al (2017) Comparisons of the postprandial inflammatory and endotoxaemic responses to mixed meals in young and older individuals: a randomised trial. Nutrients 9(4):354CrossRefPubMedCentralGoogle Scholar
  14. Münch A, Aust D, Bohr J et al, European Microscopic Colitis Group (EMCG) (2012) Microscopic colitis: current status, present and future challenges: statements of the European Microscopic Colitis Group. J Crohns Colitis 6(9):932–945. https://www.ncbi.nlm.nih.gov/pubmed/22704658. Zugegriffen: 2. Jan. 2019
  15. Ziegler JU, Steiner D, Longin CFH et al (2016) Wheat and the irritable bowel syndrome – FODMAP levels of modern and ancient species and their retention during bread making. J Funct Foods 25:257–266.  https://doi.org/10.1016/j.jff.2016.05.019CrossRefGoogle Scholar

Literatur zu Abschn. 6.4

  1. Adams JB, JohansenLJ Powell LD et al (2011) Gastrointestinal flora and gastrointestinal status in children with autism – comparisons to typical children and correlation with autism severity. BMC Gastroenterol 11:22CrossRefPubMedPubMedCentralGoogle Scholar
  2. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4(1):9–14CrossRefPubMedGoogle Scholar
  3. Cani PD et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. https://www.ncbi.nlm.nih.gov/pubmed/19240062. Zugegriffen: 2. Jan. 2019
  4. Clayton TA (2012) Metabolic differences underlying two distinct rat urinary phenotypes, a suggested role for gut microbial metabolism of phenylalanine and a possible connection to autism. FEBS Lett 586(7):956–961CrossRefGoogle Scholar
  5. Collado MC et al (2008) Imbalances in faecal and duodenal Bifidobacterium species composition in active and non-active coeliac disease. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635381. Zugegriffen: 2. Jan. 2019
  6. Dessein R et al (2009) Intestinal microbiota gives a nod to the hygiene hypothesis in type 1 diabetes. https://www.gastrojournal.org/article/S0016-5085(09)00791-4/fulltext?referrer=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2F. Zugegriffen: 2. Jan. 2019
  7. Falk Symposium (2012) Report from the Falk Workshop on microscopic colitis: creating awareness for an underappreciated disease. 3. Mai 2012, Basel. https://www.gastrojournal.org/article/S0016-5085(12)01370-4/fulltext. Zugegriffen: 2. Jan. 2019
  8. Furet JP et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss. https://www.ncbi.nlm.nih.gov/pubmed/20876719. Zugegriffen: 2. Jan. 2019
  9. Gupta RS, Gao B (2009) Phylogenomic analyses of clostridia and identification of novel protein signatures that are specific to the genus Clostridium sensu stricto (cluster I). Int J Syst Evol Microbiol 59(Pt 2):285–294CrossRefPubMedGoogle Scholar
  10. IARC (2015) International Agency for Research on Cancer. IARC Monographs evaluate consumption of red meat and processed meat. Press release No 240, 26 October 2015. https://www.iarc.fr/en/media-centre/pr/2015/pdfs/pr240_E.pdf. Zugegriffen: 20. Okt. 2018
  11. Leblhuber F, Geisler S, Steiner K et al (2015) Elevated fecal calprotectin in patients with Alzheimer’s dementia indicates leaky gut. J Neural Transm 122(9):1319–1322.  https://doi.org/10.1007/s00702-015-1381-9CrossRefPubMedGoogle Scholar
  12. Leblhuber F, Strasser B, Steiner K et al (2017) The role of intestinal microbionta in patients with cognitive decline. J Pharm Pharmacol 5:648–653Google Scholar
  13. Louis P (2012) Does the human gut microbiota contribute to the etiology of autism spectrum disorders? Dig Dis Sci 57:1987–1989CrossRefPubMedGoogle Scholar
  14. Lim M, Adams JD, Wilcox M et al (2009) An assessment of bacterial dysbiosis in pouchitis using terminal restriction fragment length polymorphisms of 16S ribosomal DNA from pouch effluent microbiota. Dis Colon Rectum 52(8):1492–1500.  https://doi.org/10.1007/dcr.0b013e3181a7b77aCrossRefPubMedGoogle Scholar
  15. Münch A, Aust D, Bohr J et al, European Microscopic Colitis Group (EMCG) (2012) Microscopic colitis: current status, present and future challenges: statements of the European Microscopic Colitis Group. J Crohns Colitis 6(9):932–945Google Scholar
  16. Obregon-Tito AJ, Tito RY, Metcalf J et al (2015) Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 6:6505CrossRefPubMedPubMedCentralGoogle Scholar
  17. Otsuka M et al (2010) Distinct effects of p38α deletion in myeloid lineage and gut epithelia in mouse models of inflammatory bowel disease. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846963. Zugegriffen: 2. Jan. 2019
  18. Read NW, Krejs GJ, Read MG et al (1980) Chronic diarrhea of unknown origin. Gastroenterology 78:264–271CrossRefPubMedGoogle Scholar
  19. Scher JU, Sczesnak A, Longman RS et al (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife.  https://doi.org/10.7554/elife.01202
  20. Sjögren YM, Jenmalm MC, Böttcher MF, Björkstén B, Sverremark-Ekström E (2009) Altered early infant gut microbiota in children developing allergy up to 5 years of age. Clin Exp Allergy 39(4):518–526.  https://doi.org/10.1111/j.1365-2222.2008.03156.xCrossRefPubMedGoogle Scholar
  21. Sokol H et al (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2575488. Zugegriffen: 2. Jan. 2019
  22. Song Y, Liu C, Finegold SM (2004) Real-time PCR quantitation of clostridia in feces of autistic children. Appl Environ Microbiol 70(11):6459–6465CrossRefPubMedPubMedCentralGoogle Scholar
  23. van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71(10):6438–6442CrossRefPubMedPubMedCentralGoogle Scholar
  24. WHO (2015) World Health Organization. Links between processed meat and colorectal cancer. WHO statement. 29 October 2015. http://www.who.int/mediacentre/news/statements/2015/processed-meat-cancer/en/#. Zugegriffen: 20. Okt. 2018
  25. Wu D, Si W, Wang M et al (2015) Hydrogen sulfide in cancer: friend or foe? Nitric Oxide 50:38–45CrossRefPubMedGoogle Scholar
  26. Yang Y, Weng W, Peng J et al (2017) Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of microRNA-21. Gastroenterology 152:851–866CrossRefPubMedGoogle Scholar

Literatur zu Abschn. 6.5

  1. Duran C, San Martin A (2014) Do endothelial cells eat tryptophan to die? Circ Res 114:406–408CrossRefPubMedPubMedCentralGoogle Scholar
  2. Macchiarulo A, Camaioni E, Nuri R, Pellicari R (2009) Highlights at the gate of tryptophan catabolism: a review on the mechanisms of activation and regulation of indoleamine 2,3-dioxygenase (IDO), a novel target in cancer disease. Amino Acids 37:219–229CrossRefPubMedGoogle Scholar
  3. Miura H, Ozaki N, Sawada M et al (2008) A link between stress and depression: shifts in the balance between the kynurenine and serotonin pathways oftryptophan metabolism and the etiology and pathophysiology of depression. Stress 11:198–209CrossRefPubMedGoogle Scholar
  4. O’Mahony SM, Clarke G, Borre YE et al (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48CrossRefPubMedGoogle Scholar

Literatur zu Abschn. 6.6

  1. Adeva MM, Souto G (2011) Diet-induced metabolic acidosis. Clin Nutr 30(4):416–421. https://www.ncbi.nlm.nih.gov/pubmed/21481501. Zugegriffen: 2. Jan. 2019CrossRefPubMedGoogle Scholar
  2. Bailey D et al (2010) Sedentary aging increases resting and exercise-induced intramuscular free radical formation. J Appl Physiol 109:449–456CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fagherazzi G et al (2013) Dietary acid load and risk of type 2 diabetes: the E3N-EPIC cohort study. Diabetologia 57(2):313–320.  https://doi.org/10.1007/s00125-013-3100-0CrossRefGoogle Scholar
  4. Heine H (2006) Lehrbuch der Biologischen Medizin, 3. Aufl. Hippokrates, Stuttgart, S 48Google Scholar
  5. Heinrich PC, Müller M, Graeve L (Hrsg) (2014) Löffler/Pertrides Biochemie und Pathobiochemie, 9. Aufl. Springer, BerlinGoogle Scholar
  6. Langbein SW et al (2006) Expression of transketolase TKTL1 predicts colon and urozhelial cancer patient survival: Warburg effect reinterpreted. Br J Cancer 94:578–585. https://www.nature.com/articles/6602962. Zugegriffen: 2. Jan. 2019
  7. Lutz J et al (1984) Calcium balance and acid-base status of women as affected by increased protein intake and sodium bicarbonate ingestion. Am J Clin Nutr 39(2):281–288CrossRefPubMedGoogle Scholar
  8. Pirchl M (2009) Does acidosis in brain play a role in Alzheimer’s disease? Neuropsychiatrie 23(3):187–192PubMedGoogle Scholar
  9. Pirlet K, Pirlet-Gottwald M (2003) Die Erhaltung von Leben und Gesundheit. Kovac, Hamburg, S 211–214Google Scholar
  10. Qamar MI, Read AE (1987) Effects of exercise on mesenteric blood flow in man. Gut 28(5):583–587CrossRefPubMedPubMedCentralGoogle Scholar
  11. Siegmund-Schultze N (2013) 37. Interdisziplinäres Forum der Bundesärztekammer: Bewegung wirkt wie ein Medikament. Dtsch Arztebl 110(7):A-271–A-273Google Scholar
  12. Souto G, Donapetry C, Calviño J, Adeva MM (2011) Metabolic acidosis-induced insulin resistance and cardiovascular risk. Metab Syndr Relat Disord 9(4):247–253.  https://doi.org/10.1089/met.2010.0108CrossRefPubMedPubMedCentralGoogle Scholar
  13. Van den Berg E et al (2012) Dietary acid and metabolic acidosis in renal transplant recipients. Clin J Am Soc Nephrol 7:1811–1818CrossRefPubMedPubMedCentralGoogle Scholar
  14. Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Carcinomzelle. Biochem Z 152:309–344Google Scholar
  15. Witasek A, Traweger C, Gritsch P et al (1996) Einflüsse von basischen Mineralsalzen auf den menschlichen Organismus unter standardisierten Ernährungsbedingungen. Erfahrungsheilkunde 45(8):477–488Google Scholar

Literatur zu Abschn. 6.7

  1. Dannappel M et al (2014) RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513(7516):90–94CrossRefPubMedPubMedCentralGoogle Scholar
  2. David LA et al (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563CrossRefPubMedGoogle Scholar
  3. Eisenberg T et al (2014) Nucleocytosolic depletion of the energy metabolite acetyl-coenzyme a stimulates autophagy and prolongs lifespan. Cell Metab 19:431–444CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fujitani Y et al (2009) The role of autophagy in pancreatic beta-cell and diabetes. Autophagy 5(2):280–282CrossRefPubMedGoogle Scholar
  5. Mariani F et al (2014) Inflammatory pathways in the early steps of colorectal cancer development. World J Gastroenterol 20(29):9716–9731CrossRefPubMedPubMedCentralGoogle Scholar
  6. Mariño G et al (2014) Regulation of autophagy by cytosolic acetyl-coenzyme A. Mol Cell 53(5):710–725CrossRefPubMedGoogle Scholar
  7. Maycotte P, Thorburn A (2014) Targeting autophagy in breast cancer. World J Clin Oncol 5(3):224–240CrossRefPubMedPubMedCentralGoogle Scholar
  8. Noguchi M et al (2014) The links between AKT and two intracellular proteolytic cascades: ubiquitination and autophagy. Biochim Biophys Acta 1846(2):342–352PubMedGoogle Scholar
  9. Remely M et al (2015) Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien Klin Wochenschr 127(9–10):394–398CrossRefPubMedPubMedCentralGoogle Scholar
  10. Turnbaugh PJ et al (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1:6ra14CrossRefPubMedPubMedCentralGoogle Scholar
  11. Walker AW et al (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 5:220–230CrossRefPubMedGoogle Scholar
  12. Zhang N et al (2015) Autophagy regulates insulin resistance following endoplasmic reticulum stress in diabetes. J Physiol Biochem 71(2):319–327.  https://doi.org/10.1007/s13105-015-0384-1CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.SalzburgÖsterreich
  2. 2.WienÖsterreich
  3. 3.Internationale Gesellschaft der F.X. Mayr-ÄrzteHimbergÖsterreich

Personalised recommendations