Advertisement

Studien über die F.X. Mayr-Medizin

  • Alex WitasekEmail author
Chapter

Zusammenfassung

Es wurden mehrere Anwendungsbeobachtungen und Pilotstudien gemacht.

Literatur

  1. Baigent C, Keech A, Kearney PM et al (2005) Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366:1267–1278CrossRefGoogle Scholar
  2. Beck A (2017) Der Effekt der modernen Mayr-Medizin. Masterarbeit, Europa Universität Viadrina, Frankfurt/Oder. http://www.fxmayr.com/UserFiles/Media/Downloads/MasterarbeitModerneMayrMedizinueberarbeitetAdeleBeck.pdf. Zugegriffen: 26 Okt. 2018

Weiterführende Literatur

    Literatur zu Abschn. 18.1

    1. Athas WF, Hedayati MA, Matanoski GM, Farmer ER, Grossman L (1991) Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res 51(21):5786–5793PubMedGoogle Scholar
    2. Burger K, Kieser N, Gallinat S et al (2007) The influence of folic acid depletion on the nucleotide excision repair capacity of human dermal fibroblasts measured by a modified Host cell reactivation assay. Biofactors 31(3–4):18–190Google Scholar
    3. Burger K, Matt K, Kieser N et al (2010) A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts. BMC Biotechnol 10:46CrossRefGoogle Scholar
    4. Bykov VJ, Sheehan JM, Hemminki K, Young AR (1999) In situ repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in human skin exposed to solar simulating radiation. J Investigative Dermatol 112(3):326–331CrossRefGoogle Scholar
    5. Cabelof DC, Yanamadala S, Raffoul JJ et al (2003) Caloric restriction promotes genomic stability by induction of base excision repair and reversal of its age-related decline. DNA Repair (Amst) 2(3):295–307CrossRefGoogle Scholar
    6. Colman RJ, Beasley TM, Kemnitz JW et al (2014) Caloric restriction reduces age-related and all-cause mortality in rhesus monkeys. Nat Commun 5:3557CrossRefGoogle Scholar
    7. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U.S.A. 101(17):6659–6663CrossRefGoogle Scholar
    8. Fontana L, Klein S, Holloszy JO, Premachandra BN (2006) Effect of long-term calorie restriction with adequate protein and micronutrients on thyroid hormones. J Clin Endocrinol Metab 91(8):3232–3235CrossRefGoogle Scholar
    9. Hall KY, Hart RW, Benirschke AK, Walford RL (1984) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievable life span. Mech Ageing Dev 24(2):163–173CrossRefGoogle Scholar
    10. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefGoogle Scholar
    11. Hart RW, Setlow RB (1974) Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U.S.A. 71(6):2169–2173CrossRefGoogle Scholar
    12. Kagawa Y (1978) Impact of Westernization on the nutrition of Japanese: changes in physique, cancer, longevity and centenarians. Prev Med 7(2):205–217CrossRefGoogle Scholar
    13. Langie SAS, Knaapen AM, Brauers KJJ et al (2006) Development and validation of a modified comet assay to phenotypically assess nucleotide excision repair. Mutagenesis 21(2):153–158CrossRefGoogle Scholar
    14. Langie SAS, Knaapen AM, Houben JMJ et al (2007) The role of glutathione in the regulation of nucleotide excision repair during oxidative stress. Toxicol Lett 168(3):302–309CrossRefGoogle Scholar
    15. Langie SAS, Wilms LC, Hämäläinen S et al (2010) Modulation of nucleotide excision repair in human lymphocytes by genetic and dietary factors. Br J Nutr 103(4):490–501CrossRefGoogle Scholar
    16. Lee C, Raffaghello L, Brandhorst S et al (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy (124).  https://doi.org/10.1126/scitranslmed.3003293CrossRefGoogle Scholar
    17. Licastro F, Weindruch R, Davis LJ, Walford RL (1988) Effect of dietary restriction upon the age-associated decline of lymphocyte dna-repair activity in mice. Age.  https://doi.org/10.1007/BF02431772CrossRefGoogle Scholar
    18. Longo VD, Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms (2).  https://doi.org/10.1016/j.tips.2009.11.004CrossRefGoogle Scholar
    19. Matt K, Burger K, Gebhard D, Bergemann B (2016a) Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells. Mech Ageing Dev 154:24–29CrossRefGoogle Scholar
    20. McCay CM, Crowell MF, Maynard LA (1989) The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935. Nutrition (Burbank, Los Angeles County, Calif.) 5(3):155–171, discussion 172Google Scholar
    21. Protiþ-Sabljiþ M, Whyte D, Fagan J et al (1985) Quantification of expression of linked cloned genes in a simian virus 40-transformed xeroderma pigmentosum cell line. Mol Cell Biol 5(7):1685–1693CrossRefGoogle Scholar
    22. Qiu X, Brown K, Hirschey MD et al (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12(6):662–667.  https://doi.org/10.1016/j.cmet.2010.11.015CrossRefGoogle Scholar
    23. Racette SB, Weiss EP, Villareal DT et al (2006) One year of caloric restriction in humans: feasibility and effects on body composition and abdominal adipose tissue. J Gerontol A Biol Sci Med Sci 61(9):943–950CrossRefGoogle Scholar
    24. Raffaghello L, Lee C, Safdie FM et al (2008) Starvation-dependent differential stress resistance protects normal but not cancer cells against highdose chemotherapy. Proc Natl Acad Sci USA 105(24):8215–8220.  https://doi.org/10.1073/pnas.0708100105CrossRefPubMedGoogle Scholar
    25. RibariĀS (2012) Diet and aging. Oxid Med Cell Longev doi:741468.  https://doi.org/10.1155/2012/741468
    26. Roguev A, Russev G (2000) Two-wavelength fluorescence assay for DNA repair. Anal Biochem 287(2):313–318.  https://doi.org/10.1006/abio.2000.4865CrossRefPubMedGoogle Scholar
    27. Roth GS, Ingram DK, Lane MA (2001) Caloric restriction in primates and relevance to humans. Ann NY Acad Sci 928:305–315CrossRefGoogle Scholar
    28. Safdie FM, Dorff T, Quinn D et al (2009) Fasting and cancer treatment in humans: a case series report. Aging 1(12):988–1007CrossRefGoogle Scholar
    29. Smith DL, McClure JM, Matecic M, Smith JS (2007) Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6(5):649–662.  https://doi.org/10.1111/j.1474-9726.2007.00326.xCrossRefPubMedGoogle Scholar
    30. Stuart JA, Karahalil B, Hogue BA et al (2004) Mitochondrial and nuclear DNA base excision repair are affected differently by caloric restriction. FASEB J 18(3):595–597.  https://doi.org/10.1096/fj.03-0890fjeCrossRefPubMedGoogle Scholar
    31. Walford RL, Mock D, Verdery R, MacCallum T (2002) Calorie restriction in biosphere 2: alterations in physiologic, hematologic, hormonal, and biochemical parameters in humans restricted for a 2-year period. J Gerontol A Biol Sci Med Sci 57(6):B211–224CrossRefGoogle Scholar
    32. Weber M (2015) Optimierung des Host Cell Reactivation Assays zur Ermittlung der DNA-Reparaturkapazität bei humanen peripheren mononukleären Blutzellen. Bachelor Thesis an der Hochschule Albstadt-SigmaringenGoogle Scholar
    33. Weindruch R (2003) Caloric restriction: life span extension and retardation of brain aging. Clin Neurosci Res 2(5–6):279–284.  https://doi.org/10.1016/S1566-2772(03)00004-5CrossRefGoogle Scholar
    34. Weraarchakul N, Strong R, Wood W, Richardson A (1989) The effect of aging and dietary restriction on DNA repair (1). doi:  https://doi.org/10.1016/0014-4827(89)90193-6CrossRefGoogle Scholar
    35. Witasek A (1999) Diagnostik und Therapie nach Dr. F. X. Mayr. Forsch Komplementärmed 6(1):45–46PubMedGoogle Scholar

    Literatur zu Abschn. 18.2

    1. Adam TC, Epel ES (2007) Stress, eating and the reward system. Physiol Behavior 91(4):449–458CrossRefGoogle Scholar
    2. Adlouni A, Ghalim N, Saïle R (1997) Fasting during Ramadan induces a marked increase in high-density lipoprotein cholesterol and decrease in low-density lipoprotein cholesterol. Ann Nutrition Metabolism 41(4):242–249CrossRefGoogle Scholar
    3. Ärzteblatt.de (2017) Diabetes: Zyklische Fasten-ähnliche Diät senkt Blutzuckerwerte bei Mäusen. https://www.aerzteblatt.de/nachrichten/73291/Diabetes-Zyklisches-Fasten-aehnliche-Diät-senkt-Blutzuckerwerte-beiMaeusen. Zugegriffen: 20. Apr. 2017
    4. Beer AM, Rüffer A, Ostermann T (2001) Verläufe des sekretorischen Immunglobulin A des Darms und Befindlichkeit von Patienten unter naturheilkundiger Therapie und Heilfasten. Forsch Komplementärmed 8(6):346–353Google Scholar
    5. Beresford SAA, Johnson KC, Whitlock E (2006) Low-fat dietary pattern and risk of colorectal cancer. The women’s health initiative randomized controlled dietary modification trial. JAMA 295(6):643–654CrossRefGoogle Scholar
    6. Berg JM, Tymoczko JL, Stryer L (2002) Section 30.3 food intake and starvation induce metabolic changes. Biochemistry, 5. Aufl. Freeman, New YorkGoogle Scholar
    7. Chakaroun R, Heyne H, Stumvoll M (2016) Adipositas, Typ-2-Diabetes und das Mikrobiom, unser zweites Genom. Diabetol Stoffwechsel 11(01):102–112CrossRefGoogle Scholar
    8. Cheng CW, Villani V, Longo VD (2017) Fasting-mimicking diet promotes Ngn3-driven β-cell regeneration to reverse diabetes. Cell 168(5):775–788CrossRefGoogle Scholar
    9. Deutsches Ärzteblatt (2017) Empfehlungen der Deutschen Gesellschaft für Ernährung in der Kritik. https://www.aerzteblatt.de/nachrichten/72608. Zugegriffen: 20. Apr. 2017
    10. Estruch R, Ros E, Martínez-Gonzáles MA for the PREDIMED Study Investigators (2013) Primary prevention of cardiovascular disease with a mediterranean diet. N Engl J Med 368:14. http://www.nejm.org/doi/pdf/10.1056/NEJMoa1200303. Zugegriffen: 19. Apr. 2017
    11. Europa-Universität Viadrina Frankfurt (Oder). Berufsbegleitender Masterstudiengang Kulturwissenschaft – Komplementäre Medizin – Modul 3a Forschungsmethodik. Statistik-Glossar. http://lernen.kwkm.de/pluginfile.php?file=%2F1089%2Fmod_resource%2Fcontent%2F0%2FGlossar_Statistik.pdf. Zugegriffen: 1. Apr. 2017
    12. Festa A, D’Agostino R Jr, Howard G et al (2000) Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation 102:42–47CrossRefGoogle Scholar
    13. Göhler L, Hahnemann T, Siems WG (2000) Reduction of plasma catecholamines in humans during clinically controlled severe underfeeding. Prev Med 30(2):95–102CrossRefGoogle Scholar
    14. Horn F (2012) Biochemie des Menschen. Thieme, StuttgartCrossRefGoogle Scholar
    15. Howard BV, Van Horn L, Kotchen JM (2006) Low-fat dietary pattern and risk of cardiovascular disease. The women’s health initiative randomized controlled dietary modification trial. JAMA 295(6):655–666CrossRefGoogle Scholar
    16. Kiecolt-Glaser JK (2010) Stress, food, and inflammation: psychoneuroimmunology and nutrition at the cutting edge. Psychosom Med 72(4):365CrossRefGoogle Scholar
    17. Kraft K, Stange R (Hrsg) (2010) Lehrbuch Naturheilverfahren. Hippokrates, Stuttgart, S 322–329Google Scholar
    18. Li C, Ostermann T, Michalsen A (2013) Metabolic and psychological response to 7-day fasting in obese patients with and without metabolic syndrome. Forsch Komplementärmed 20:413–420CrossRefGoogle Scholar
    19. Liebscher DAT (2012) Auswirkungen religiösen Fastens auf anthropometrische Parameter, Blutfettwerte und Hämodynamik normalgewichtiger gesunder Probanden. Dissertationsschrift, Medizinische Fakultät Carl Gustav Carus der Technischen Universität Dresden. http://www.qucosa.de/fileadmin/data/qucosa/documents/9629/Auswirkungen_religiösen_Fastens_auf_anthropometrische_Parameter,_Bluttfettwerte_und_Hämodynamik_normalgewichtiger_gesunder_Probanden.pdf. Zugegriffen: 20. Apr. 2017
    20. Lischka E (2016) Fasten und Typ-2-Diabetes. Diab aktuell 13(6):294–298Google Scholar
    21. Löffler G, Petrides PE (1997) Biochemie und Pathobiochemie. Springer, BerlinCrossRefGoogle Scholar
    22. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19(2):181–192CrossRefGoogle Scholar
    23. Matt K, Burger K, Bergemann J (2016b) Influence of calorie reduction on DNA repair capacity of human peripheral blood mononuclear cells. Mech Ageing Dev 154:24–29CrossRefGoogle Scholar
    24. Michalsen A (2015) Anti-Aging durch Heilfasten? Z Komplementärmed 07(06):26–29CrossRefGoogle Scholar
    25. Mutschler R (2013) Ein Umdenken in der Medizin tut not. Mitochondrien in den Mittelpunkt stellen: Die Wege der mitochondrialen Medizin. OM Ernährung, Sonderdruck 142, F70–73. https://www.researchgate.net/profile/Rainer_Mutschler/publication/236950749_Ein_Umdenken_in_der_Medizin_tut_not/links/0046351a5ceba5e349000000.pdf. Zugegriffen: 30. Apr. 2017
    26. Pirlet K (1968) Die Wirkprinzipien der physikalisch-diätetischen Therapie. Med Welt 19:2782Google Scholar
    27. Pirlet K (1990) Intestinale Autointoxikation und intestinales Immunsystem. In: Fenner T (Hrsg) Immunologie. Jungjohann, Stuttgart, S 71–80Google Scholar
    28. Rauch E (2011) Die Darmreinigung nach Dr. med. F.X. Mayr. Trias, StuttgartGoogle Scholar
    29. Reinecke C (2002) Der Stoffwechsel beim Fasten. Erfahrungsheilkunde 51(08):566–571. https://www.thieme-connect.com/products/ejournals/html/10.1055/s-2002-33406. Zugegriffen: 30. Apr. 2017CrossRefGoogle Scholar
    30. Sinha R, Cross AJ, Schatzkin A (2009) Meat intake and mortality: a prospective study of over half a million people. Arch Intern Med 169(6):562–571. http://jamanetwork.com/journals/jamainternalmedicine/fullarticle/414881?version=meter%20at%20null&module=meter-Links&pgtype=Blogs&contentId=&mediaId=&referrer=&priority=true&action=click&contentCollection=meter-links-click. Zugegriffen: 30. Apr. 2017
    31. Stadelmann L (1993) Dr. F.X. Mayr ein Forscherleben. Neues Leben, AlberschwendeGoogle Scholar
    32. Steiniger J, Schneider A, Janietz K (2009) Einfluss von therapeutischem Fasten und Ausdauertraining auf den Energiestoffwechsel und die körperliche Leistungsfähigkeit Adipöser. Complement Med Res 16(6):383–390CrossRefGoogle Scholar
    33. Stossier H, Baronin von Hahn M (2008) F.X. Mayr – Medizin der Zukunft. Trias, StuttgartGoogle Scholar
    34. Symbiopharm Nachschau Mikrobiom-Kongress in Heidelberg (2015) Der Mensch und sein individuelles Mikrobiom. Chancen für neue Therapieansätze. https://www.symbiopharm.de/de/fachbereich/kongress-nachbericht.html. Zugegriffen: 20. Apr 2017
    35. Toeller M et al (2005) Evidenz-basierte Ernährungsempfehlungen zur Behandlung und Prävention des Diabetes mellitus. Diabetes Stoffwechsel 14:75–94. http://m.ddg.info/fileadmin/Redakteur/Leitlinien/Evidenzbasierte_Leitlinien/057-001_S2_Ernaehrungsempfehlungen_zur_Behandlung_und_Praevention_des_Diabetes_mellitus_06-2010_06-2015.pdf. Zugegriffen: 19. Apr. 2017
    36. Torres SJ, Nowson CA (2007) Relationship between stress, eating behavior, and obesity. Nutrition 23(11):887–894CrossRefGoogle Scholar
    37. Volger E, Brinkhaus B (Hrsg) (2013) Kursbuch Naturheilverfahren für die ärztliche Weiterbildung. Urban & Fischer, MünchenGoogle Scholar
    38. Wei M, Brandhorst S, Longo VD (2017) Fasting-mimicking diet and markers/risk factors for aging, diabetes, cancer, and cardiovascular disease. Sci Translat Med 9(377):eaai8700CrossRefGoogle Scholar
    39. Wilhelmi de Toledo F, Buchinger A, Michalsen A (2013) Fasting therapy – an expert panel update of the 2002 Consensus Guidelines. Forsch Komplementärmed 20:434–443CrossRefGoogle Scholar
    40. Yasuda E, Nakamura R, Matsugi R et al (2018) Association between the severity of symptomatic knee osteoarthritis and cumulative metabolic factors. Aging Clin Exp Res 30:481–488CrossRefGoogle Scholar
    41. Zehner J, Kuneweg G, Hausmann L, Kaffarnik H (1986) Verhalten der Elektrolytausscheidung, der Plasma-Renin-Aktivität sowie des Stoffwechsels bei totalem Fasten (Null-Diät). Aktuelle Ernährungsmed 11(5):217–224Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Internationale Gesellschaft der F.X. Mayr-ÄrzteHimbergÖsterreich

Personalised recommendations