• Aleksandar DamyanovEmail author
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)


Diesel engines with their high efficiency are of great importance for the transport of passengers and goods. However, the typical exhaust gas emissions from the combustion of conventional diesel fuel make further development inevitable, if future air quality regulations are to be met. Second generation biofuels have the potential to reduce the CO2 emissions of the transport sector, while simultaneously mitigating ethical questions surrounding the issue of food production. Furthermore, oxygenated fuels provide beneficial combustion properties and can help to solve traditional conflicts of objectives like the soot-NOx trade-off or the efficiency-NOx compromise. Among many candidates oxymethylene ethers (OME) are discussed to be promising alternatives to fossil fuels for future diesel engine powering. They can completely substitute diesel or may be mixed with it. Polyoxymethylendimethylethers (POMDME, also called oxymethylene ethers or OME), are known to provide almost soot free combustion and their usage might wipe out major constraints of diesel engines by reducing emissions and improving efficiency.


  1. 1.
    Damyanov A, Hofmann P, Drack J, Pichler T, Schwaiger N, Siebenhofer M (2017) Operation of a diesel engine with biogenous oxymethylene ethers. In: Proceedings of the 26th aachen colloquium automobile and technology, pp 289–314Google Scholar
  2. 2.
    Damyanov A, Hofmann P, Geringer B, Schwaiger N, Pichler T, Siebenhofer M (2018) Biogenous ethers: production and operation in a diesel engine. Automot Engine Technol.
  3. 3.
    Eurostat: Greenhouse gas emission statistics. Accessed 13 June 2017
  4. 4.
    Schwaiger N (2015) Lignozellulose basierte sauerstoffhaltige Dieselersatzkraftstoffe; Study; Technische Universität Graz, Institut für chemische Verfahrenstechnik und Umwelttechnik, MärzGoogle Scholar
  5. 5.
    Drack J (2015) Bewertung der Herstellung von sauerstoffhaltigen Dieselersatzkraftstoffen durch indirekte Biomasseverflüssigung. Diplomarbeit, Graz University of TechnologyGoogle Scholar
  6. 6.
    Härtl M, Gaukel K, Pelerin D, Wachtmeister, G (2017) Oxymethylenether als potenziell CO2-neutraler Kraftstoff für saubere Dieselmotoren. Teil 1: Motoruntersuchungen. MTZ Motortechnische Zeitschrift 78(2):52–58Google Scholar
  7. 7.
    Gaukel K, Pelerin D, Härtl M, Wachtmeister G, Burger J, Maus W, Jacob E (2016) The fuel OME2: an example to pave the way to emission-neutral vehicles with internal combustion. In: Lenz E (Hrsg). In: Internationales Wiener Motorensymposium, Vienna, 28–29 April 2016. ISBN 978-3-18-379912-1 37Google Scholar
  8. 8.
    Härtl M, Seidenspinner P, Jacob E, Wachtmeister G (2015) Oxygenate screening on a heavy-duty diesel engine and emission characteristics of highly oxygenated oxymethylene ether fuel OME1. Fuel J 153:328–335.
  9. 9.
    Pellegrini L, Marchionna M, Patrini R, Beatrice C, Del Giacomo N, Guido C Combustion behaviour and emission performance of neat and blended polyoxymethylene dimethyl ethers in a light-duty diesel engine. SAE 2012-01-1053Google Scholar
  10. 10.
    Lumpp B, Rothe D, Pastötter C, Lämmermann R, Jacob E (2011) Oxymethylenether als Dieselkraftstoffzusätze der Zukunft. MTZ Motortechnische Zeitschrift 72(3):198–202Google Scholar
  11. 11.
    Härtl M, Seidenspinner P, Wachtmeister G, Jacob E (2014) Synthetischer Dieselkraftstoff OME1 – Lösungsansatz für den Zielkonflikt NOx-/Partikel-Emission. MTZ Motortechnische Zeitschrift 75(7–8):68–73Google Scholar
  12. 12.
    Feiling A, Münz M, Beidl C (2016) Potential of the synthetic fuel OME1b for the soot-free diesel engine. ATZextra worldwide 21(11):16–21 (Fuels and Lubricants of the Future)Google Scholar
  13. 13.
    Richter G, Zellbeck H (2017) OME als Kraftstoffersatz im Pkw-Dieselmotor. MTZ Motortechnische Zeitschrift 78(12):66–72Google Scholar
  14. 14.
    Crusius S, Müller M, Stein H (2017) Oxy-Methylen-Di-Methylether (OMDME or OMEx) as an alternative for diesel fuel: properties, additivation ans first engine tests. In: Schubert N (Hrsg). In: Proceedings of the 11th International Colloquium Fuels, Ostfildern, 27–29 June 2017Google Scholar
  15. 15.
    Zhu Y, Hinds WC, Kim S, Sioutas C (2002) Concentration and size distribution of ultrafine particles near a major highway. Air & Waste Management Association 52:1032–1042CrossRefGoogle Scholar
  16. 16.
    Pelerin D, Gaukel K, Härtl M, Wachtmeister G (2017) Simplifying of the fuel injection system and lowest emissions with the alternative diesel fuel oxymethylene ether. In: Proceedings of the 16th conference “The working process of the internal combustion engine”, Graz, September 28–29, 2017Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute for Powertrains and Automotive TechnologyVienna University of TechnologyViennaAustria

Personalised recommendations