Comparison of Cascaded Utilization with Life Cycle Assessment – a Case Study of Wind Turbine Blades

  • Kalle Wulf
  • Frauke GermerEmail author
  • Henning Albers
Conference paper


The utilization of resources in multiple cascade stages can improve the resource efficiency of product systems. This paper discusses a method by which a comparison of cascaded utilizations can be achieved despite the multi-functionality of such systems. Based on a comparison of the cascaded utilization with an equivalence system, potential reductions in impact indicators can be identified. In a case study, four scenarios for the cascaded utilization of a rotor blade are developed on the basis of a literature review. Potential reductions in the impact indicators Cumulative Energy Demand (CED) and Cumulative Raw Material Demand (CRD) are calculated. The main results of a review of the method are twofold: (i) The selection of the equivalence systems has a decisive influence on the result of the study and (ii) the approach requires a high data diversity and availability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank our colleagues from the Research Group Cascade Use, in particular Dr. Alexandra Pehlken, who provided insight and expertise that greatly assisted the research.


  1. [1] BMUB (2016) German Resource Efficiency Program II: Programm zur nachhaltigen Nutzung und zum Schutz der natürlichen Ressourcen.
  2. [2] Klöpffer W, Grahl B (2009) Ökobilanz (LCA): Ein Leitfaden für Ausbildung und Beruf. Wiley-VCH, Weinheim, 1st ed., ISBN 978-3-527-32043-1Google Scholar
  3. [3] Risse M, Richter K (2016) Nutzung nachwachsender Rohstoffe in Kaskaden – Ansätze zur lebenszyklusorientierten Bewertung der ökologischen und ökonomischen Effekte. uwf 24:63-68.
  4. [4] Höglmeier K, Steubing B, Weber-Blaschke G, Richter K (2015) LCA-based optimization of wood utilization under special consideration of a cascading use of wood. J Environ Manage 152:158–170.
  5. [5] Paraskevas D, Kellens K, Dewulf W, Duflou J (2015) Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. J Clean Prod 105:357–370.
  6. [6] Korhonen J (2000) Completing the industrial ecology cascade chain in the case of a paper industry - SME potential in industrial ecology. Eco-Management Audit 7:11–20.;2-c
  7. [7] Höglmeier K, Weber-Blaschke G, Richter K (2014) Utilization of recovered wood in cascades versus utilization of primary wood—a comparison with life cycle assessment using system expansion. Int J Life Cycle Assess 19:1755–1766.
  8. [8] Sirkin T, Houten M (1994) The Cascade Chain: A Theory and Tool for Achieving Resource Sustainability with Applications for Product Design. Resour Conserv Recycl 10:213–276.
  9. [9] International Ogranization for Standardization (2006) ISO 14040:2006 Environmental management - Life cycle assessment - Principles and framework.Google Scholar
  10. [10] International Organization for Standardization (2006) ISO 14044:2006 Environmental management -- Life cycle assessment -- Requirements and guidelines.Google Scholar
  11. [11] BMWI (2916) EEG-Novelle 2016: Fortgeschriebenes Eckpunktepapier zum Vorschlag des BMWi für das neue EEG.
  12. [12] Seiler E. (2010) Recycling von Windkraftanlagen. Pflinztal, Internal reportGoogle Scholar
  13. [13] Albers H, Greiner S, Böhm A (2011) Recycling of Rotor Blades from Wind Turbines. In: Pehlken A, Solsbach A, Stenzel W (eds) Hanse-Studien 2011. pp. 67–75. ISBN 978-3-814-22283-7Google Scholar
  14. [14] Tryfonidou R (2006) Energetische Analyse eines Offshore-Windparks unter Berücksichtigung der Netzintegration. Ruhr-Universität, BochumGoogle Scholar
  15. [15] Pickering SJ (2006) Recycling technologies for thermoset composite materials—current status. Compos Part A Appl Sci Manuf 37:1206–1215.
  16. [16] Beauson J, Lilholt H, Brøndsted P (2014) Recycling solid residues recovered from glass fibre-reinforced composites – A review applied to wind turbine blade materials. J Reinf Plast Compos 33:1542–1556.
  17. [17] DeRosa R, Telfeyan E, Mayes S (2004) Expanding the use of recycled SMC in BMCs. Presentation, Global Plastics Environmental Conference 2004 (GPEC)Google Scholar
  18. [18] Martens H, Goldmann D (2016) Recyclingtechnik: Fachbuch für Lehre und Praxis. Springer, Wiesbaden, 2nd ed., ISBN 978-3-658-02786-5,
  19. [19] Onwudili JA, Miskolczi N, Nagy T, Lipóczi G (2016) Recovery of glass fibre and carbon fibres from reinforced thermosets by batch pyrolysis and investigation of fibre re-using as reinforcement in LDPE matrix. Compos Part B Eng 91:154–161.
  20. [20] Pickering SJ, Kelly RM, Kennerley JR, Rudd CD, Fenwick NJ (2000) A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Compos Sci Technol 60:509–523.
  21. [21] Woidasky J (2013) Weiterentwicklung des Recyclings von faserverstärkten Verbunden. In: Thomé-Kozmiensky KJ, Goldmann D (eds) TK Verlag 2013. pp. 241-259. ISBN 978-3-935317-97-9Google Scholar
  22. [22] Friedel A (1999) Einfluss der Produktgestalt auf den Energieaufwand beim Recycling mechanischer Bauteile und Baugruppen. Springer, Berlin, ISBN: 978-3-642-47976-2Google Scholar
  23. [23] Umweltbundesamt (1999) Basisdaten und Methoden zum kumulierten Energieaufwand.
  24. [24] European Commission (2006) Reference Document on the Best Available Techniques for Waste Incineration. Report.Google Scholar
  25. [25] VDI (2012) Richtlinie 4600: Kumulierter Energieaufwand (KEA) - Begriffe, Berechnungsmethoden.Google Scholar
  26. [26] VDI (2016) Richtlinie 4800: Blatt 2 Ressourceneffizienz - Bewertung des Rohstoffaufwands.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Applied Sciences BremenBremenGermany

Personalised recommendations