Advertisement

The Importance of Recyclability for the Environmental Performance of Battery Systems

  • Jens F. PetersEmail author
  • Manuel Baumann
  • Marcel Weil
Conference paper

Abstract

While several studies about the environmental impacts of batteries exist, the end-of-life stage is often disregarded and the relevance of battery reuse or recycling not quantified. However, the end-of-life phase of battery storage systems is highly relevant for their overall environmental performance. In order to quantify this relevance, we extend existing LCA studies by an end-of life model and assess the influence of battery recycling for the life cycle impact of three different battery types. These include a lithium-ion battery (LIB), a vanadium-redox-flow battery (VRFB) and an aqueous hybrid ion battery (AHIB), all for stationary energy storage services (renewable support). The results show that a high recyclability can improve the environmental performance of the batteries over their life cycle significantly. This underlines the need for a design for recyclability of batteries for minimising environmental impacts of battery systems and the corresponding loss of valuable resources.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank the Helmholtz Excellence-Network „post-Lithium Batteries“ for funding.

References

  1. [1] Agora Energiewende (2014) Stromspeicher in der Energiewende. Agora Energiewende, Berlin, GermanyGoogle Scholar
  2. [2] Baumann MJ, Peters JF, Weil M, Grunwald A (2017) CO2 footprint and life cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol 5:1071–1083 .  https://doi.org/10.1002/ente.201600622
  3. [3] Peters JF, Baumann MJ, Zimmermann B, Braun J, Weil M (2017) The environmental impact of Li-Ion batteries and the role of key parameters – A review. Renew Sustain Energy Rev 67:491–506Google Scholar
  4. [4] Buchert M, Jenseit W, Merz C, Schüler D (2011) Ökobilanz zum „Recycling von Lithium-Ionen-Batterien“ (LithoRec). Öko-Institut, Darmstadt, GermanyGoogle Scholar
  5. [5] Buchert M, Jenseit W, Merz C, Schüler D (2011) Entwicklung eines realisierbaren Recyclingkonzepts für die Hochleistungsbatterien zukünftiger Elektrofahrzeuge – LiBRi. Teilprojekt: LCA der Recyclingverfahren. Öko-InstitutGoogle Scholar
  6. [6] Fisher K, Wallén E, Laenen PP, Collins M (2006) Battery Waste Management Life Cycle AssessmentGoogle Scholar
  7. [7] Dunn JB, Gaines L, Sullivan J, Wang MQ (2012) Impact of Recycling on Cradle-to-Gate Energy Consumption and Greenhouse Gas Emissions of Automotive Lithium-Ion Batteries. Environ Sci Technol 46:12704–12710 .  https://doi.org/10.1021/es302420z
  8. [8] Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J, Vandeputte K (2010) Recycling rechargeable lithium ion batteries: Critical analysis of natural resource savings. Resour Conserv Recycl 54:229–234 .  https://doi.org/10.1016/j.resconrec.2009.08.004
  9. [9] Unterreiner L, Jülch V, Reith S (2016) Recycling of Battery Technologies – Ecological Impact Analysis Using Life Cycle Assessment (LCA). Energy Procedia 99:229–234 .  https://doi.org/10.1016/j.egypro.2016.10.113
  10. [10] EC-JRC (2010) ILCD Handbook: General Guide for Life Cycle Assessment - Detailed guidance. European Commission - Joint Research Centre. Institute for Environment and Sustainability, Ispra, Italy: EC-JRC - Institute for Environment and SustainabilityGoogle Scholar
  11. [11] ISO (2006) ISO 14040 – Environmental management – Life Cycle Assessment – Principles and framework. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  12. [12] ISO (2006) ISO 14044 – Environmental management – Life Cycle Assessment – Requirements and guidelines. International Organization for Standardization, Geneva, SwitzerlandGoogle Scholar
  13. [13] Guinée JB, Gorrée M, Heijungs R, Huppes G, Kleijn R, Koning A de, Oers L van, Wegener Sleeswijk A, Suh S, Udo de Haes HA, Bruijn H de, Duin R van, Huijbregts MAJ (2002) Handbook on life cycle assessment. Operational guide to the ISO standards. I: LCA in perspective. IIa: Guide. IIb: Operational annex. III: Scientific background. Kluwer Academic Publishers, DordrechtGoogle Scholar
  14. [14] GreenDelta GmbH (2017) OpenLCA 1.6. http://www.openlca.org/. Accessed 5 Sep 2017
  15. [15] Peters JF, Weil M (2018) Providing a common base for life cycle assessments of Li-Ion batteries. J Clean Prod 704–713Google Scholar
  16. [16] Peters JF, Weil M (2017) Aqueous hybrid ion batteries- an environmentally friendly alternative for stationary energy storage? J Power Sources 364:258–265Google Scholar
  17. [17] Weber S, Peters J, Baumann MJ, Weil M (2018) Life Cycle Assessment of a Vanadium-Redox-Flow Battery. Environ Sci Technol submitted:Google Scholar
  18. [18] Bauer C (2010) Ökobilanz von Lithium-Ionen Batterien. Paul Scherrer Institut, Labor für Energiesystem-Analysen (LEA), Villigen, SwitzerlandGoogle Scholar
  19. [19] Peters JF, Weil M (2017) Aqueous hybrid ion batteries – An environmentally friendly alternative for stationary energy storage? J Power Sources 364:258–265 .  https://doi.org/10.1016/j.jpowsour.2017.08.041
  20. [20] Minke C (2016) Techno-ökonomische Modellierung und Bewertung von stationären Vanadium-Redox-Flow-Batterien im industriellen Maßstab, 40th ed. Cuvillier Verlag, GöttingenGoogle Scholar
  21. [21] Baumann MJ, Peters JF, Weil M, Grunwald A (2017) CO2 footprint and life cycle costs of electrochemical energy storage for stationary grid applications. Energy Technol submitted:Google Scholar
  22. [22] Li H, Xing S, Liu Y, Li F, Guo H, Kuang G (2017) Recovery of Lithium, Iron, and Phosphorus from Spent LiFePO4 Batteries Using Stoichiometric Sulfuric Acid Leaching System. ACS Sustain Chem Eng 5:8017–8024 .  https://doi.org/10.1021/acssuschemeng.7b01594
  23. [23] Fisher K, Wallén E, Laenen PP, Collins M (2006) Battery Waste Management Life Cycle Assessment. Environmental Resources Management (ERM)Google Scholar
  24. [24] Roznyatovskaya N, Herr T, Küttinger M, Fühl M, Noack J, Pinkwart K, Tübke J (2016) Detection of capacity imbalance in vanadium electrolyte and its electrochemical regeneration for all-vanadium redox-flow batteries. J Power Sources 302:79–83 .  https://doi.org/10.1016/j.jpowsour.2015.10.021

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Helmholtz Institute Ulm (HIU)Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute for Technology Assessment and Systems Analysis (ITAS)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations