Skip to main content

Advertisement

SpringerLink
Book cover

IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency pp 55–71Cite as

Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps

Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps

  • Alexander von Birgelen4 &
  • Oliver Niggemann4 
  • Chapter
  • Open Access
  • First Online: 21 August 2018
  • 2837 Accesses

  • 4 Citations

  • 6 Altmetric

Part of the Technologien für die intelligente Automation book series (TIA,volume 8)

Abstract

Modern Cyber-Physical Production Systems provide large amounts of data such as sensor and control signals or configuration parameters. The available data enables unsupervised, data-driven solutions for model-based anomaly detection and anomaly localization: models which represent the normal behavior of the system are learned from data. Then, live data from the system can be compared to the predictions of the model to detect anomalies and perform anomaly localization. In this paper we use self-organizing maps for the aforementioned tasks and evaluate the presented methods on real-world systems.

Download chapter PDF

References

  1. Factories of the Future: MultiAnnual Roadmap for the contractual PPP under HORIZON 2020. European Union, Luxembourg (2013)

    Google Scholar 

  2. Alhoniemi, E., Hollmn, J., Simula, O., Vesanto, J.: Process monitoring and modeling using the self-organizing map. Integrated Computer Aided Engineering 6, 3–14 (1999), http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.573

  3. Frey, C.: Monitoring of complex industrial processes based on self-organizing maps and watershed transformations. In: Industrial Technology (ICIT), 2012 IEEE International Conference on (Mar 2012)

    Google Scholar 

  4. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual IEEE Symposium on Logic in Computer Science. pp. 278–292 (Jul 1996)

    Google Scholar 

  5. Kohonen, T.: The self-organizing map. In: Proceedings of the IEEE. vol. 78 (Sep 1990)

    Google Scholar 

  6. Kumpulainen, P., Hätönen, K.: Local anomaly detection for mobile network monitoring. Inf. Sci. 178(20), 3840–3859 (2008)

    Google Scholar 

  7. Liukkonen, M., Hiltunen, Y., Laakso, I.: Advanced monitoring and diagnosis of industrial processes. In: 2013 8th EUROSIM Congress on Modelling and Simulation. pp. 112–117 (Sept 2013)

    Google Scholar 

  8. Maier, A.: Identification of timed behavior models for diagnosis in production systems. Ph.D. thesis, Paderborn, Univ. (2015)

    Google Scholar 

  9. Meyer, F.: Topographic distance and watershed lines. Signal Processing 38(1), 113–125 (jul 1994), http://dx.doi.org/10.1016/0165-1684(94)90060-4

  10. Niggemann, O., Lohweg, V.: On the diagnosis of cyber-physical production systems: State-of-the-art and research agenda. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  11. OPAK-Consortium: Offene engineering-plattform fr autonome, mechatronische automatisierungskomponenten in funktionsorientierter architektur (2017), http://www.opak-projekt.de/

  12. Simula, O., Kangas, J.: Process monitoring and visualisation using self-organizing maps (1995)

    Google Scholar 

  13. Tian, J., Azarian, M.H., Pecht, M.: Anomaly detection using self-organizing mapsbased k-nearest neighbor algorithm. Second European Conference of the Prognostics and Health Management Society 2014 (2014)

    Google Scholar 

  14. Ultsch, A., Siemon, H.P.: Kohonen’s self-organizing feature maps for exploratory data analysis. In: Proceedings of the International Neural Network Conference (INNC’90 (1990), http://www.uni-marburg.de/fb12/datenbionik/pdf/pubs/1990/UltschSiemon90

  15. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (Jun 1991)

    Google Scholar 

  16. von Birgelen, A., Niggemann, O.: Using self-organizing maps to learn hybrid timed automata in absence of discrete events. In: 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2017) (Sep 2017)

    Google Scholar 

  17. Yin, H.: The Self-Organizing Maps: Background, Theories, Extensions and Applications, pp. 715–762. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute Industrial IT, Ostwestfalen-Lippe University of Applied Sciences, Lemgo, Germany

    Alexander von Birgelen & Oliver Niggemann

Authors
  1. Alexander von Birgelen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Oliver Niggemann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Alexander von Birgelen .

Editor information

Editors and Affiliations

  1. inIT - Institut für industrielle Informationstechnik, Hochschule Ostwestfalen-Lippe, Lemgo, Nordrhein-Westfalen, Germany

    Prof. Dr. Oliver Niggemann

  2. Institut für Logic and Computation, Vienna University of Technology, Wien, Wien, Austria

    Dr. Peter Schüller

Rights and permissions

<p>This chapter is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, a link is provided to the Creative Commons license and any changes made are indicated.</p> <p>The images or other third party material in this chapter are included in the work's Creative Commons license, unless indicated otherwise in the credit line; if such material is not included in the work's Creative Commons license and the respective action is not permitted by statutory regulation, users will need to obtain permission from the license holder to duplicate, adapt or reproduce the material.</p>

Reprints and Permissions

Copyright information

© 2018 The Author(s)

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

von Birgelen, A., Niggemann, O. (2018). Anomaly Detection and Localization for Cyber-Physical Production Systems with Self-Organizing Maps. In: Niggemann, O., Schüller, P. (eds) IMPROVE - Innovative Modelling Approaches for Production Systems to Raise Validatable Efficiency. Technologien für die intelligente Automation, vol 8. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57805-6_4

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-662-57805-6_4

  • Published: 21 August 2018

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57804-9

  • Online ISBN: 978-3-662-57805-6

  • eBook Packages: EngineeringEngineering (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.