Skip to main content

Deep Learning and Deep Knowledge Representation of EEG Data

  • Chapter
  • First Online:
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

  • 2709 Accesses

Abstract

This chapter presents general methods for deep learning and deep knowledge representation of EEG data in brain-inspired SNN (BI-SNN). These methods are applied to develop specific methods for EEG data analysis and for modelling brain cognitive functions, such as: performing cognitive tasks; emotion recognition from face expression; sub-conscious processing of stimuli; modelling attentional bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)

    Article  Google Scholar 

  2. E. Niedermeyer, F.H. L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), 1309p

    Google Scholar 

  3. D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier for Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547

    Google Scholar 

  4. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)

    Article  Google Scholar 

  5. R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci. 9(9), 720–729 (2008)

    Google Scholar 

  6. T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  7. K. Broderson et al., Generative embedding for model-based classification of fMRI Data. PLoS Comput. Biol. 7(6), 1–19 (2011)

    MathSciNet  Google Scholar 

  8. K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)

    Article  Google Scholar 

  9. K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)

    Article  Google Scholar 

  10. S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)

    Article  Google Scholar 

  11. J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain. 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988)

    Google Scholar 

  12. J. Lancaster et al., Automated Talairach Atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)

    Article  Google Scholar 

  13. A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817

    Google Scholar 

  14. J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)

    Article  Google Scholar 

  15. L. Benuskova, N. Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290

    Google Scholar 

  16. M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    Article  Google Scholar 

  17. W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)

    Article  Google Scholar 

  18. C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)

    Article  Google Scholar 

  19. J.B. Poline, R.A. Poldrack, Frontiers in brain imaging methods grand challenge. Front. Neurosci. 6, 96 (2012). https://doi.org/10.3389/fnins.2012.00096

    Article  Google Scholar 

  20. Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  21. H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  22. E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)

    Article  Google Scholar 

  23. S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  24. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Networks 41, 188–201 (2013)

    Article  Google Scholar 

  25. M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  26. M.G. Doborjeh, Y. Wang, N. Kasabov, R. Kydd, B. Russell, A spiking neural network methodology and system for learning and comparative analysis of EEG data from healthy versus addiction treated versus addiction not treated subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016)

    Google Scholar 

  27. M. Doborjeh, N. Kasabov, Z.G. Doborjeh, Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data. Evolving Syst. 1–17 (2017). https://doi.org/10.1007/s12530-017-9178-8

  28. N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes. Inf. Sci. 294, 565–575 (2014). https://doi.org/10.1016/j.ins.2014.06.028

  29. K. Dhoble, N. Nuntalid, G. Indiveri, N. Kasabov, On-line Spatiotemporal Pattern Recognition with Evolving Spiking Neural Networks Utilizing Address Event Representation, Rank Oder and Temporal Spike Learning, in Proceedings of WCCI 2012 (IEEE Press, 2012), pp. 554–560

    Google Scholar 

  30. W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48

    Google Scholar 

  31. G, Indiveri, B. Linares-Barranco, T. Hamilton, A. Van Schaik, R. Etienne-Cummings, T. Delbruck, S. Liu, P. Dudek, P. Hafliger, S. Renaud et al., Neuromorphic silicon neuron circuits. Front. Neurosci. 5 (2011)

    Google Scholar 

  32. N. Scott, N. Kasabov, G. Indiveri, NeuCube Neuromorphic Framework for Spatio-Temporal Brain Data and Its Python Implementation, in Proceedings of ICONIP 2013. LNCS, vol. 8228 (Springer, Berlin, 2013), pp.78-84

    Google Scholar 

  33. N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Networks 52, 62–76 (2014)

    Article  Google Scholar 

  34. L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)

    Article  Google Scholar 

  35. S. Thorpe, J. Gautrais, Rank order coding. Comput. Neurosci. Trends Res. 13, 113–119 (1998)

    Article  Google Scholar 

  36. C.W. Anderson, M. Kirby, in Colorado State University—Brain Computer Interface Laboratory—1989 Keirn and Aunon. Internet: www.cs.colostate.edu/eeg/main/data/1989_Keirn_and_Aunon (2003) [April 14, 2014]

  37. Z. K. Keirn, in Alternative modes of communication between man and machine. Master’s Thesis, Electrical Engineering Department, Purdue University, USA

    Google Scholar 

  38. Z.A. Keirn, J.I. Aunon, A new mode of communication between man and his surroundings. IEEE Trans. Biomed. Eng. 37(12), 1209–1214 (1990)

    Article  Google Scholar 

  39. C. Anderson, D. Peterson, Recent advances in EEG signal analysis and classification, in Clinical Applications of Artificial Neural Networks, ed. by R. Dybowski, V. Gant (Cambridge University Press, Cambridge, 2001), pp. 175–191

    Google Scholar 

  40. C. Anderson, Z. Sijercic, Classification of EEG Signals from Four Subjects During Five Mental Tasks, in Solving Engineering Problems with Neural Networks: Proceedings of Conference on Engineering Applications in Neural Networks (EANN’96), ed. by A.B. Bulsari, S. Kallio, D. Tsaptsinos (Systems Engineering Association, PL 34, FIN-20111 Turku 11, Finland, 1996), pp. 407–414

    Google Scholar 

  41. L. Nan-Ying et al., Classification of mental tasks from EEG signals using extreme learning machine. Int. J. Neural Syst. 16(01), 29–38 (2006)

    Article  Google Scholar 

  42. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, London, 2007) (first edition 2002)

    Google Scholar 

  43. H. Kawano, A. Seo, Z. Gholami, N. Kasabov, M.G. Doborjeh, Analysis of Similarity and Differences in Brain Activities between Perception and Production of Facial Expressions Using EEG Data and the NeuCube Spiking Neural Network Architecture, in ICONIP, Kyoto. LNCS (Springer, Bernin, 2016)

    Google Scholar 

  44. V. Gallese, L. Fadiga, L. Fogassi, G. Rizzolatti, Action recognition in the premotor cortex. Brain 119, 593–609 (1996)

    Google Scholar 

  45. M. Iacoboni, R.P. Woods, M. Brass, H. Bekkering, J. C. Mazziotta, G. Rizzolatti, Cortical mechanisms of human imitation. Science 286(5449), 2526–2528 (1999)

    Google Scholar 

  46. E. Tu, N. Kasabov, J. Yang, Mapping temporal variables into the NeuCube for improved pattern recognition, predictive modelling and understanding of stream data. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2016)

    Google Scholar 

  47. N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, Evolving spatio-temporal data machines based on the NeuCube neuromorphic framework: design methodology and selected applications. Neural Networks 78(2016), 1–14 (2016)

    Article  Google Scholar 

  48. M.G. Doborjeh, E. Capecci, N. Kasabov, Classification and Segmentation of fMRI Spatio-Temporal Brain Data with a Neucube Evolving Spiking Neural Network Model, in Analysis of Similarity and Differences in Brain Activities. IEEE SSCI, Orlando, USA (2014), pp. 227–228

    Google Scholar 

  49. M.G. Doborjeh, N. Kasabov, Dynamic 3D Clustering of Spatio-temporal Brain Data in the NeuCube Spiking Neural Network Architecture on a Case Study of fMRI Data, in Neural Information Processing, Istanbul (2015)

    Google Scholar 

  50. D. Matsumoto, P. Ekman, in Japanese, caucasian facial expressions of emotion (JACFEE) [Slides]. Intercultural and Emotion Research Laboratory, Department of Psychology, San Francisco State University, San Francisco (1988)

    Google Scholar 

  51. K.M. Alfano, C.R. Cimino, Alteration of expected hemispheric asymmetries: valence and arousal effects in neuropsychological models of emotion. Brain Cogn. 66, 213–220 (2008)

    Google Scholar 

  52. Z. Doborjeh, N. Kasabov, M. Doborjeh, A. Sumich, Modelling peri-perceptual brain processes in a deep learning spiking neural network architecture. Nature, Scientific Reports 8, 8912 (2018). https://10.1038/s41598-018-27169-8; https://www.nature.com/articles/s41598-018-27169-8

  53. S. Venkataraman, S.D. Sarasvathy, N. Dew, W.R. Forster, Reflections on the 2010 AMR decade award: whither the promise? Moving forward with entrepreneurship as a science of the artificial. Acad. Manage. Rev. 37, 21–33 (2012)

    Google Scholar 

  54. Z.O. Touhami, L. Benlafkih, M. Jiddane, Y. Cherrah, O. Malki, A. Benomar, Neuromarketing: where marketing and neuroscience meet. Afr. J. Bus. Manage. 5(5), 1528–1532 (2011). https://doi.org/10.5897/AJBM10.729

    Article  Google Scholar 

  55. S.M. McClure, J. Li, D. Tomlin, K.S. Cypert, L.M. Montague, P.R. Montague, Neural correlates of behavioural preference for culturally familiar drinks. Neuron 44, 379–387 (2004)

    Article  Google Scholar 

  56. M. Schaefer, H. Berens, H.J. Heinz, M. Rotte, Neural correlates of culturally familiar brands of car manufacturers. Neuroimage 31(2), 861–865 (2006)

    Article  Google Scholar 

  57. H. Walter, B. Abler, A. Ciaramidaro, S. Erk, Motivating forces of human actions. Neuroimaging reward and social interaction. Brain Res. Bull. 15(5), 368–381 (2005)

    Google Scholar 

  58. A.R. Damasio, The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351, 1413–1420 (1996)

    Article  Google Scholar 

  59. N. Lee, A.J. Broderick, L. Chamberlain, What is neuromarketing? A discussion and agenda for future research. Int. J. Psychophysiol. 63, 199–204 (2007)

    Article  Google Scholar 

  60. A. Morin, Self-awareness part 1: definition, measures, effects, functions, and antecedents. J. Theor. Social Psychol. 5(10), 807–823 (2011)

    Google Scholar 

  61. C. Oreja-Guevara, Neuromarketing. Neurologia Supl. 5(1), 4–7 (2009)

    Google Scholar 

  62. C.S. Crandall, Psychophysical scaling of stressful life events. Psychol. Sci. 3, 256–258 (1992)

    Article  Google Scholar 

  63. D. Labbe, N. Pineau, N. Martin, Measuring consumer response to complex precision: scaling vs. categorization task. Food Quality Prefer. 23(2), 134–137 (2012)

    Google Scholar 

  64. J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob), Sao Paulo, Brazil (2014), 409–414

    Google Scholar 

  65. N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011

  66. E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings of WCCI—IJCNN 2016, Vancouver, 24–29 July 2016 (IEEE Press, 2016), pp. 1360–1366

    Google Scholar 

  67. Z.G. Doborjeh, M.G. Doborjeh, N. Kasabov, Attentional bias pattern recognition in spiking neural networks from spatio-temporal EEG data. Cognitive Comput. 10, 35–48 (2018). https://doi.10.1007/s12559-017-9517-x

  68. N.Kasabov (ed.), Springer Handbook of Bio-Neuroinformatics (Springer, Berlin, 2014)

    Google Scholar 

  69. Wikipedia: http://www.wikipedia.com

  70. American Electroencephalographic Society, American electroencephalographic society guidelines for standard electrode position nomenclature. J. Clin. Neurophysiol. 8(2), 200–202 (1991)

    Article  Google Scholar 

  71. G.H. Klem, H.O. Lüders, H. Jasper, C. Elger, The ten-twenty electrode system of the International Federation. Electroencephalogram Clin. Neurophysiol. 52, 3 (1999)

    Google Scholar 

Download references

Acknowledgements

Some of the material in this chapter has been first published in journal and conference publications as referenced and cited in corresponding sections of the chapter and also in Springer book volumes [15, 68]. I acknowledge the contribution of my co-authors of these publications Lubica Benuskova, Maryam Doborjeh, Elisa Capecci, Zohreh Doborjeh, Nathan Scott, Alex Sumich. Most of the experiments in Sects. 8.4, 8.5 and 8.6 were conducted by Z. Doborjeh and M. Dorojeh, while experiments in Sect. 8.3 were conducted by E. Capecci.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Appendix

Appendix

(from [34]). Anatomical locations of international 10–10 EEG cortical projections into Talairach coordinates. Same coordinates are used in a SNNc of a NeuCube model.

EEG chan.

Talairach coordinates

Gyri

Brodmann area

x av (mm)

y av (mm)

z av (mm)

FP1

−21.2 ± 4.7

66.9 ± 3.8

12.1 ± 6.6

L FL

Superior frontal G

10

FPz

1.4 ± 2.9

65.1 ± 5.6

11.3 ± 6.8

M FL

Bilat. medial

10

FP2

24.3 ± 3.2

66.3 ± 3.5

12.5 ± 6.1

R FL

Superior frontal G

10

AF7

−41.7 ± 4.5

52.8 ± 5.4

11.3 ± 6.8

L FL

Middle frontal G

10

AF3

−32.7 ± 4.9

48.4 ± 6.7

32.8 ± 6.4

L FL

Superior frontal G

9

AFz

1.8 ± 3.8

54.8 ± 7.3

37.9 ± 8.6

M FL

Bilat. medial

9

AF4

35.1 ± 3.9

50.1 ± 5.3

31.1 ± 7.5

L FL

Superior frontal G

9

AF8

43.9 ± 3.3

52.7 ± 5.0

9.3 ± 6.5

R FL

Middle frontal G

10

F7

−52.1 ± 3.0

28.6 ± 6.4

3.8 ± 5.6

L FL

Inferior frontal G

45

F5

−51.4 ± 3.8

26.7 ± 7.2

24.7 ± 9.4

L FL

Middle frontal G

46

F3

−39.7 ± 5.0

25.3 ± 7.5

44.7 ± 7.9

L FL

Middle frontal G

8

F1

−22.1 ± 6.1

26.8 ± 7.2

54.9 ± 6.7

L FL

Superior frontal G

6

Fz

0.0 ± 6.4

26.8 ± 7.9

60.6 ± 6.5

M FL

Bilat. medial

6

F2

23.6 ± 5.0

28.2 ± 7.4

55.6 ± 6.2

R FL

Superior frontal G

6

F4

41.9 ± 4.8

27.5 ± 7.3

43.9 ± 7.6

R FL

Middle frontal G

8

F6

52.9 ± 3.6

28.7 ± 7.2

25.2 ± 7.4

R FL

Middle frontal G

46

F8

53.2 ± 2.8

28.4 ± 6.3

3.1 ± 6.9

R FL

Inferior frontal G

45

FT9

−53.8 ± 3.3

−2.1 ± 6.0

−29.1 ± 6.3

L TL

Inferior temporal G

20

FT7

−59.2 ± 3.1

3.4 ± 5.6

−2.1 ± 7.5

L TL

Superior temporal G

22

FC5

−59.1 ± 3.7

3.0 ± 6.1

26.1 ± 5.8

L FL

Precentral G

6

FC3

−45.5 ± 5.5

2.4 ± 8.3

51.3 ± 6.2

L FL

Middle frontal G

6

FC1

−24.7 ± 5.7

0.3 ± 8.5

66.4 ± 4.6

L FL

Superior frontal G

6

FCz

1.0 ± 5.1

1.0 ± 8.4

72.8 ± 6.6

M FL

Superior frontal G

6

FC2

26.1 ± 4.9

3.2 ± 9.0

66.0 ± 5.6

R FL

Superior frontal G

6

FC4

47.5 ± 4.4

4.6 ± 7.6

49.7 ± 6.7

R FL

Middle frontal G

6

FC6

60.5 ± 2.8

4.9 ± 7.3

25.5 ± 7.8

R FL

Precentral G

6

FT8

60.2 ± 2.5

4.7 ± 5.1

−2.8 ± 6.3

L TL

Superior temporal G

22

FT10

55.0 ± 3.2

−3.6 ± 5.6

−31.0 ± 7.9

R TL

Inferior temporal G

20

T7

−65.8 ± 3.3

−17.8 ± 6.8

−2.9 ± 6.1

L TL

Middle temporal G

21

C5

−63.6 ± 3.3

−18.9 ± 7.8

25.8 ± 5.8

L PL

Postcentral G

123

C3

−49.1 ± 5.5

−20.7 ± 9.1

53.2 ± 6.1

L PL

Postcentral G

123

C1

−25.1 ± 5.6

−22.5 ± 9.2

70.1 ± 5.3

L FL

Precentral G

4

Cz

0.8 ± 4.9

−21.9 ± 9.4

77.4 ± 6.7

M FL

Precentral G

4

C2

26.7 ± 5.3

−20.9 ± 9.1

69.5 ± 5.2

R FL

Precentral G

4

C4

50.3 ± 4.6

−18.8 ± 8.3

53.0 ± 6.4

R PL

Postcentral G

123

C6

65.2 ± 2.6

−18.0 ± 7.1

26.4 ± 6.4

R PL

Postcentral G

123

T8

67.4 ± 2.3

−18.5 ± 6.9

−3.4 ± 7.0

R TL

Middle temporal G

21

TP7

−63.6 ± 4.5

−44.7 ± 7.2

−4.0 ± 6.6

L TL

Middle temporal G

21

CP5

−61.8 ± 4.7

−46.2 ± 8.0

22.5 ± 7.6

L PL

Supramarginal G

40

CP3

−46.9 ± 5.8

−47.7 ± 9.3

49.7 ± 7.7

L PL

Inferior parietal G

40

CP1

−24.0 ± 6.4

−49.1 ± 9.9

66.1 ± 8.0

L PL

Postcentral G

7

CPz

0.7 ± 4.9

−47.9 ± 9.3

72.6 ± 7.7

M PL

Postcentral G

7

CP2

25.8 ± 6.2

−47.1 ± 9.2

66.0 ± 7.5

R PL

Postcentral G

7

CP4

49.5 ± 5.9

−45.5 ± 7.9

50.7 ± 7.1

R PL

Inferior parietal G

40

CP6

62.9 ± 3.7

−44.6 ± 6.8

24.4 ± 8.4

R PL

Supramarginal G

40

TP8

64.6 ± 3.3

−45.4 ± 6.6

−3.7 ± 7.3

R TL

Middle temporal G

21

P9

−50.8 ± 4.7

−51.3 ± 8.6

−37.7 ± 8.3

L TL

Tonsile

NP

P7

−55.9 ± 4.5

−64.8 ± 5.3

0.0 ± 9.3

L TL

Inferior temporal G

37

P5

−52.7 ± 5.0

−67.1 ± 6.8

19.9 ± 10.4

L TL

Middle temporal G

39

P3

−41.4 ± 5.7

−67.8 ± 8.4

42.4 ± 9.5

L PL

Precuneus

19

P1

−21.6 ± 5.8

−71.3 ± 9.3

52.6 ± 10.1

L PL

Precuneus

7

Pz

0.7 ± 6.3

−69.3 ± 8.4

56.9 ± 9.9

M PL

Superior parietal L

7

P2

24.4 ± 6.3

−69.9 ± 8.5

53.5 ± 9.4

R PL

Precuneus

7

P4

44.2 ± 6.5

−65.8 ± 8.1

42.7 ± 8.5

R PL

Inferior parietal L

7

P6

54.4 ± 4.3

−65.3 ± 6.0

20.2 ± 9.4

R TL

Middle temporal G

39

P8

56.4 ± 3.7

−64.4 ± 5.6

0.1 ± 8.5

R TL

Inferior temporal G

19

P10

51.0 ± 3.5

−53.9 ± 8.7

−36.5 ± 10.0

L OL

Tonsile

NP

PO7

−44.0 ± 4.7

−81.7 ± 4.9

1.6 ± 10.6

R OL

Middle occipital G

18

PO3

−33.3 ± 6.3

−84.3 ± 5.7

26.5 ± 11.4

R OL

Superior occipital G

19

POz

0.0 ± 6.5

−87.9 ± 6.9

33.5 ± 11.9

M OL

Cuneus

19

PO4

35.2 ± 6.5

−82.6 ± 6.4

26.1 ± 9.7

R OL

Superior occipital G

19

PO8

43.3 ± 4.0

−82.0 ± 5.5

0.7 ± 10.7

R OL

Middle occipital G

18

O1

−25.8 ± 6.3

−93.3 ± 4.6

7.7 ± 12.3

L OL

Middle occipital G

18

Oz

0.3 ± 5.9

−97.1 ± 5.2

8.7 ± 11.6

M OL

Cuneus

18

O2

25.0 ± 5.7

−95.2 ± 5.8

6.2 ± 11.4

R OL

Middle occipital G

18

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Deep Learning and Deep Knowledge Representation of EEG Data. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_8

Download citation

Publish with us

Policies and ethics