Skip to main content

Evolutionary- and Quantum-Inspired Computation. Applications for SNN Optimisation

  • Chapter
  • First Online:
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

  • 2635 Accesses

Abstract

The chapter introduces the main principles and several algorithms of both evolutionary computation (EC) and its further development as quantum inspired evolutionary computation (QiEC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Darwin, On the Origin of Species by Means of Natural Selection, or the Preservation of 991 Favored Races in the Struggle for Life, 1st edn. (John Murray, London, 1859). p. 502

    Google Scholar 

  2. D.E. Goldberg, Genetic Algorithm in Search, Optimization and Machine learning (Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989). ISBN 0201157675

    MATH  Google Scholar 

  3. J. Koza, Genetic Programming of Computers by means of Natural Selection (MIT Press, Cambridge, MA, USA, 1992). ISBN 0-262-11170-5

    MATH  Google Scholar 

  4. J.H. Holland, Genetic algorithm. Sci. Am. 1992, 66–72 (1992)

    Article  Google Scholar 

  5. J.H. Holland, Emergence: From Chaos to Order (Addison-Wesely, Redwood City, California, 1998). ISBN 0-201-14943-5

    MATH  Google Scholar 

  6. J. Kennedy, R. Eberhart, Particle Swarm Optimization, IEEE, in Proceedings of International Conference on Neural Networks (1995), pp. 1942–1948

    Google Scholar 

  7. Y. Tan (2018) GPU-Based Parallel Implementation of Swarm Intelligence Algorithms (Morgan Kaufmann, 2015)

    Google Scholar 

  8. D.B. Fogel, J.W. Atmar, Comparing genetic operators with Gaussian mutations in simulated evolutionary optimization. Biol. Cybem. 63, 111–114 (1990)

    Article  Google Scholar 

  9. X. Yao, A Review of evolutionary artificial neural networks. Int. J. Intell. Syst. 8(4), 539–567 (1993)

    Article  Google Scholar 

  10. T. Furuhashi, K. Nakaoka, Y. Uchikawa, A New Approach to Genetic Based Machine Learning and an Efficient Finding of Fuzzy Rule, in Proceedings of the 1994 IEEE/Nagoya-University World Wisepersons Workshop (WWW’94), Lecture Notes in Artificial Intelligence, ed by T. Furuhashi, vol. 1011 (Springer, 1994), pp. 173–189

    Google Scholar 

  11. H. Mühlenbein, G. Paass, From Recombination of Genes to the Estimation of Distributions in Binary Parameters, in Proceedings International Conference on Evolutionary Computation, Parallel Problem Solving From Nature—PPSN IV (1996), pp. 178–187

    Google Scholar 

  12. M. Pelikan, D. Goldberg, F. Lobo, A survey of optimization by building and using probabilistic model, 1999, IlliGAL, Tech. Rep. No. 99018 (1999)

    Google Scholar 

  13. C. Gonzalez, J. Lozano, P. Larranaga, Analyzing the PBIL algorithm by means of discrete dynamical systems. Complex Syst. 12, 465–479 (2000)

    MATH  Google Scholar 

  14. G.R. Harik, F.G. Lobo, D.E. Goldberg, The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)

    Article  Google Scholar 

  15. A. Johnson, J.L. Shapiro, The Importance of Selection Mechanisms in Distribution Estimation Algorithms, in Proceedings 5th International Conference on Artificial Evolution AE01, Oct 2001, (2001), pp. 91–103

    Google Scholar 

  16. C. Adami, Introduction to Artificial Life (Springer, New York, 1998). ISBN 978-1-4612-7231-1

    Book  Google Scholar 

  17. W.K. Wootters, W.H. Zurek, A Single Quantum Cannot Be Cloned. Nature 1982(299), 802–803 (1982)

    Article  Google Scholar 

  18. R.P. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6/7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  19. P.W. Shor, Algorithms for Quantum Computation: Discrete Log and Factoring, in Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science—FOCS (1994), pp. 20–22

    Google Scholar 

  20. K.H. Han, J.H. Kim, Quantum-inspired evolutionary algorithm for class of combinatorial optimization. IEEE Trans. Evolut. Comput. 6(6), 580–593 (2002)

    Article  Google Scholar 

  21. J.S. Jang, K.H. Han, J.H. Kim, Face Detection Using Quantum-Inspired Evolutionary Algorithm, in Proceedings of the IEEE Congress on Evolutionary Computation (2004), pp. 2100–2106

    Google Scholar 

  22. A.V.A. da Cruz, M.M.B. Vellasco, M.A.C. Pacheco, Quantum Inspired Evolutionary Algorithm for Numerical Optimization, in Proceedings of the IEEE Congress on Evolutionary Computation (2006), pp. 2630–2637

    Google Scholar 

  23. H. Talbi, A. Draa, M. Batouche, A novel quantum inspired evaluation algorithm for multisource affine image registration. Int. Arab J. of Inf. Technol. 3(1), 9–15 (2006)

    Google Scholar 

  24. G.K. Venayagamoorthy, G. Singhal, Quantum inspired evolutionary algorithms and binary particle swarm optimization for training MLP and SRN neural networks. J. Comput. Theor. Nanosci. 2(4), 561–568 (2005)

    Article  Google Scholar 

  25. L.K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, in Proceedings 28th Annual ACM Symposium on the Theory of Computing (1996), pp. 212–129

    Google Scholar 

  26. D. Deutsch, Quantum computational networks. Proc. R. Soc. Lond. pp. 73–90 (1989)

    Google Scholar 

  27. A. Ezhov, D. Ventura, Quantum neural networks, in Future Directions for Intelligent Systems ed by N. Kasabov (Springer, Berlin, 2000)

    Google Scholar 

  28. M. Defoin-Platel, S. Schliebs, N. Kasabov, A Versatile Quantum-Inspired Evolutionary Algorithm, in Proceedings of the IEEE Congress on Evolutionary Computation (2007), pp. 423–430

    Google Scholar 

  29. S. Schliebs, M. Defoin-Platel, S. Worner, N. Kasabov, Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Netw. 22(5–6), 623–632 (2009)

    Article  Google Scholar 

  30. H.N.A. Hamed, N. Kasabov, S.M. Shamsuddin, Integrated Feature Selection and Parameter Optimization for Evolving Spiking Neural Networks Using Quantum Inspired Particle Swarm Optimization. In Proceedings of the International Conference of Soft Computing and Pattern Recognition (2009), pp. 695–698

    Google Scholar 

  31. B. Yuan, M. Gallagher, Playing in continuous spaces: some analysis and extension of population-based incremental learning, in The 2003 Congress on Evolutionary Computation. CEC’03, vol. 1, pp. 443–450

    Google Scholar 

  32. M. Gallagher, M. Frean, Population-based continuous optimization, probabilistic modelling and mean shift. Evol. Comput. 13(1), 29–42 (2005)

    Article  Google Scholar 

  33. M. Gallagher, M. Frean, T. Downs, Real-Valued Evolutionary Optimization Using a Flexible Probability Density Estimator, in Proceedings of the GECCO 1999 Genetic and Evolutionary Computation Conference (Morgan Kaufmann Publishers, 1999), pp. 840–846

    Google Scholar 

  34. P.A. Bosman, D. Thierens, Expanding from discrete to continuous estimation of distribution algorithms: the idea, in: In Parallel Problem Solving From Nature—PPSN VI (Springer, 2000), pp. 767–776

    Google Scholar 

  35. E. Mininno, F. Cupertino, D. Naso, Real-valued compact genetic algorithms for embedded microcontroller optimization. IEEE Trans. Evolut. Comput. 12(2), 203–219 (2008)

    Article  Google Scholar 

  36. I. Servet, L. Travée-Massuyès, D. Stern, Telephone network traffic overloading diagnosis and evolutionary computation techniques, in AE’97: Selected Papers from the Third European Conference on Artificial Evolution. Springer, London, UK, pp. 137–144 (1998)

    Google Scholar 

  37. J. Geweke, Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities, in: Computing Science and Statistics: Proceedings of the 23rd Symposium on the Interface. pp. 571–578 (1991)

    Google Scholar 

  38. M. Sebag, A. Ducoulombier, Extending Population-Based Incremental Learning to Continuous Search Spaces, in PPSN V: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature (Springer, London, UK, 1998), pp. 418–427

    Google Scholar 

  39. H. Mühlenbein, T. Mahnig, A.O. Rodriguez, Schemata, distributions and graphical models in evolutionary optimization. J. Heuristics 5(2), 215–247 (1999)

    Article  Google Scholar 

  40. M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multimodel EDA, in Evolutionary Computation, IEEE Transactions onIn print (2009)

    Google Scholar 

  41. M.A. Potter, K.A.D. Jong, Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8, 1–29 (2000)

    Article  Google Scholar 

  42. N. Kasabov, To spike or not to spike: a probabilistic spiking neural model. Neural Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  43. N. Kasabov, Evolving intelligence in humans and machines: integrative evolving connectionist systems approach. IEEE Comput. Intell. Mag. 3(3), 23–37 (2008)

    Article  Google Scholar 

  44. N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering Approach (Springer, Berlin, 2007)

    Google Scholar 

  45. G. John, R. Kohavi, Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    MATH  Google Scholar 

  46. S. Schliebs, M. Defoin-Platel, S. Worner, N. Kasabov, Quantum-Inspired Feature and Parameter Optimization of Evolving Spiking Neural Networks with a Case Study from Ecological Modeling, in Proceedings of the IJCNN 2009, Atlanta, 11–19 June (IEEE Press, 2009)

    Google Scholar 

  47. CABI, Crop Protection Compendium, Global Module, 5th edn. (2003)

    Google Scholar 

  48. M. Watts, S. Worner, Using MLP to determine abiotic factors influencing the establishment of insect pest species, in International Joint Conference on Neural Networks (IJCNN’06). IEEE, Vancouver, Canada, pp. 1840–1845 (2006)

    Google Scholar 

  49. S. Worner, G. Leday, T. Ikeda, Uncertainty Analysis and Ensemble Selection of Statistical and Machine Learning Models that Predict Species Distribution, in Ecological Informatics, Cancun, Mexico (2008)

    Google Scholar 

  50. M.T. Vera, R. Rodriguez, D.F. Segura, J.L. Cladera, R.W. Sutherst, Potential geographical distribution of the mediterranean fruit fly, ceratitis capitata (diptera:tephritidae) with emphasis on Argentina and australia. Environ. Entomol. 31(6), 1009–1022 (2002)

    Article  Google Scholar 

  51. L. Benuskova, N. Kasabov, Application of CNGM to learning and memory, in Computational Neurogenetic Modeling, Topics in Biomedical Engineering, International Book Series (Springer, Boston, MA, 2007)

    Google Scholar 

  52. N. Kasabov, H.N.A. Hamed, Quantum-inspired particle swarm optimisation for integrated feature and parameter optimisation of evolving spiking neural networks. Int. J. Artif. Intell. 7(11), 114–124 (2011)

    Google Scholar 

  53. H.N.A. Hamed, N. Kasabov, S.M. Shamsuddin, Probabilistic evolving spiking neural network optimisation using dynamic quantum-inspired particle swarm optimisation. Aust. J. Intell. Inf. Process. Syst. 11(1), 23–28 (2010)

    Google Scholar 

  54. H.N.A. Hamed, N. Kasabov, S.M. Shamsuddin, Dynamic quantum-inspired particle swarm optimization as feature and parameter optimizer for evolving spiking neural networks. Int. J. Mod. Optim. 2(3), 2012 (2010). https://doi.org/10.7763/IJMO.2012.V2.108

    Article  Google Scholar 

  55. G. John, R. Kohavi, K. Pfleger, Irrelevant Features and the Subset Selection Problem. In Proceedings of the 11th International Conference on Machine Learning (1994), pp. 121–129

    Google Scholar 

  56. G. John, R. Kohavi, Wrappers for feature subset selection. Artif. Intell. 97(1–2), 273–324 (1997)

    MATH  Google Scholar 

  57. S.M. Bohte, J.N. Kok, H.L. Poutre, Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1) (2002)

    Google Scholar 

  58. S. Wysoski, L. Benuskova, N. Kasabov, Text-Independent Speaker Authentication with Spiking Neural Networks, in Proceedings of the ICANN 2007 (Springer, 2007)

    Google Scholar 

  59. S. Wysoski, L. Benuskova, N. Kasabov, fast and adaptive network of spiking neurons for multi-view visual pattern recognition. Neurocomputing 71(13–15), 2563–2575 (2008)

    Article  Google Scholar 

  60. S.J. Thorpe (1997), How can the human visual system process a natural scene in under 150 ms? Experiments and neural network models, in ESANN, 1997

    Google Scholar 

  61. K.J. Lang, M.J. Witbrock, Learning to Tell Two Spirals Apart, in Proceedings of the 1988 Connectionist Models Summer School SanMateo (Morgan Kauffmann, 1998), pp. 52–59

    Google Scholar 

  62. N. Kasabov (ed.) Springer Handbook of Bio-/Neuroinformatics (Springer, Berlin, 2014)

    Google Scholar 

  63. J. Kacprzyk, W. Pedrycz (eds.) Springer Handbook of Computational Intelligence (Springer, Berlin, 2015)

    Google Scholar 

  64. L. Benuskova, N. Kasabov, Computational Neurogenetic Modelling (Springer, New York, 2007)

    Google Scholar 

Download references

Acknowledgements

The chapter includes some materials published previously by the author in collaboration with colleagues. I acknowledge the contribution of the following colleagues in these publications: Stefan Schliebs, Haza Nuzly, Michael Defoin-Platel, Mike Watts. Some of the material is also taken from my previous books with Springer [44, 62, 64].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Evolutionary- and Quantum-Inspired Computation. Applications for SNN Optimisation. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_7

Download citation

Publish with us

Policies and ethics