APAL with Memory Is Better

  • Alexandru Baltag
  • Aybüke ÖzgünEmail author
  • Ana Lucia Vargas Sandoval
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10944)


We introduce Arbitrary Public Announcement Logic with Memory (APALM), obtained by adding to the models a ‘memory’ of the initial states, representing the information before any communication took place (“the prior”), and adding to the syntax operators that can access this memory. We show that APALM is recursively axiomatizable (in contrast to the original Arbitrary Public Announcement Logic, for which the corresponding question is still open). We present a complete recursive axiomatization, that uses a natural finitary rule, we study this logic’s expressivity and the appropriate notion of bisimulation.



We thank the anonymous WOLLIC referees for their extremely valuable comments on a previous draft of this paper.


  1. 1.
    Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement logic. J. Appl. Log. 8, 62–81 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., de Lima, T.: ‘Knowable’ as ‘known after an announcement’. Rev. Symb. Log. 1, 305–334 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Balbiani, P., van Ditmarsch, H.: A simple proof of the completeness of APAL. Stud. Log. 8(1), 65–78 (2015)Google Scholar
  4. 4.
    Balbiani, P., van Ditmarsch, H., Kudinov, A.: Subset space logic with arbitrary announcements. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 233–244. Springer, Heidelberg (2013). Scholar
  5. 5.
    Baltag, A., Gierasimczuk, N., Özgün, A., Vargas Sandoval, A.L., Smets, S.: A dynamic logic for learning theory. In: Madeira, A., Benevides, M. (eds.) DALI 2017. LNCS, vol. 10669, pp. 35–54. Springer, Cham (2018). Scholar
  6. 6.
    Baltag, A., Özgün, A., Vargas Sandoval, A.L.: Topo-logic as a dynamic-epistemic logic. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 330–346. Springer, Heidelberg (2017). Scholar
  7. 7.
    Bjorndahl, A.: Topological subset space models for public announcements. In: van Ditmarsch, H., Sandu, G. (eds.) Jaakko Hintikka on Knowledge and Game-Theoretical Semantics. OCL, vol. 12, pp. 165–186. Springer, Cham (2018). Scholar
  8. 8.
    Bjorndahl, A., Özgün, A.: Topological subset space models for belief. In: Proceedings of the 16th TARK. EPTCS, vol. 251, pp. 88–101. Open Publishing Association (2017)Google Scholar
  9. 9.
    Bolander, T., Andersen, M.B.: Epistemic planning for single-and multi-agent systems. J. Appl. Non-Class. Log. 21, 9–34 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. Ann. Pure Appl. Log. 78, 73–110 (1996)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kuijer, L.B.: Unsoundness of \(R(\Box )\) (2015).
  12. 12.
    McCarthy, J.: Formalization of two puzzles involving knowledge. In: Formalizing Common Sense: Papers by John McCarthy, (Original 1978–81). Ablex Publishing Corporation (1990)Google Scholar
  13. 13.
    Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Proceedings of the 4th TARK, pp. 95–105. Morgan Kaufmann (1992)Google Scholar
  14. 14.
    Renne, B., Sack, J., Yap, A.: Dynamic epistemic temporal logic. In: He, X., Horty, J., Pacuit, E. (eds.) LORI 2009. LNCS (LNAI), vol. 5834, pp. 263–277. Springer, Heidelberg (2009). Scholar
  15. 15.
    van Benthem, J.: One is a Lonely Number: On the Logic of Communication. Lecture Notes in Logic, pp. 96–129. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  16. 16.
    van Benthem, J.: What one may come to know. Analysis 64, 95–105 (2004)CrossRefGoogle Scholar
  17. 17.
    van Ditmarsch, H.: The russian cards problem. Studia Logica 75, 31–62 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    van Ditmarsch, H., French, T.: Quantifying over Boolean announcements (2017).
  19. 19.
    van Ditmarsch, H., French, T., Hales, J.: Positive announcements (2018).
  20. 20.
    van Ditmarsch, H., French, T., Pinchinat, S.: Future event logic-axioms and complexity. Adv. Modal Log. 8, 77–99 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    van Ditmarsch, H., Knight, S., Özgün, A.: Arbitrary announcements on topological subset spaces. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 252–266. Springer, Cham (2015). Scholar
  22. 22.
    van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topological spaces. In: Proceedings of the 15th TARK, pp. 95–102 (2015)Google Scholar
  23. 23.
    van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topological spaces–Extended version. Synthese, 1–43 (2015)Google Scholar
  24. 24.
    van Ditmarsch, H., van der Hoek, W., Kuijer, L.B.: Fully arbitrary public announcements. Adv. Modal Log. 11, 252–267 (2016)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Wang, Y.N., Ågotnes, T.: Multi-agent subset space logic. In: Proceedings of the 23rd IJCAI, pp. 1155–1161. IJCAI/AAAI (2013)Google Scholar
  26. 26.
    Wáng, Y.N., Ågotnes, T.: Subset space public announcement logic. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 245–257. Springer, Heidelberg (2013). Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Alexandru Baltag
    • 1
  • Aybüke Özgün
    • 1
    Email author
  • Ana Lucia Vargas Sandoval
    • 1
  1. 1.ILLCUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations