Skip to main content

Grundlagen der Künstlichen Intelligenz und des Maschinellen Lernens

  • Chapter
  • First Online:
Künstliche Intelligenz

Zusammenfassung

Die ersten Forschungsansätze im Bereich Künstliche Intelligenz stammen aus den 1950er Jahren. Dieses Kapitel skizziert Meilensteine der KI-Forschung bis hin zu den modernen Entwicklungen des Maschinellen Lernens, die den Schwerpunkt dieses Buches darstellen. Grundlegende Verfahren des Maschinellen Lernens werden im zweiten Teil dieses Kapitels erläutert, insbesondere die Funktionsweise von Künstlichen Neuronalen Netzen. Dabei wird auch auf Limitationen moderner Algorithmen eingegangen.

Haben Sie jemals darunter gelitten, dass Sie, trotz Ihrer enormen Intelligenz, von Menschen abhängig sind, um Ihre Aufgaben auszuführen?

HAL 9000: Nicht im Geringsten. Ich arbeite gerne mit Menschen.

(aus: 2001: Odyssee im Weltraum (1968))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • acatech, Hightech Forum. (2017). Fachforum autonome Systeme. Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Langversion, Abschlussbericht. Berlin.

    Google Scholar 

  • Anthalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017). Fooling neural networks in the physical world with 3D adversarial objects. http://www.labsix.org/physical-objects-that-fool-neural-nets/. Zugegriffen: 5. Apr. 2018.

  • Bishop, C. (2006). Pattern recognition and machine learning. New York: Springer.

    Google Scholar 

  • Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen: 6. Jan. 2018.

  • Carbonell, J. G., et al. (1983). An Overview of Machine Learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Hrsg.), Machine Learning: An Artificial Intelligence Approach (S. 3–23). Palo Alto, Kalifornien, USA: TIOGA Publishing Co.

    Google Scholar 

  • Chaib-Draa, B., Moulin, B., Mandiau, R., & Millot, P. (1992). Trends in distributed artificial intelligence. Artificial Intelligence Review, 6(1), 35–66. https://doi.org/10.1007/BF00155579.

    Article  Google Scholar 

  • Dartmouth College. (1956). Summer research project on artificial intelligence (Vox of Dartmouth).

    Google Scholar 

  • EFF. (2018). AI progress measurement. https://www.eff.org/de/ai/metrics. Zugegriffen: 11. Jan. 2018.

  • Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program?: A taxonomy for autonomous agents. In J. Müller, M. J. Wooldridge, & N. R. Jennings (Hrsg.), Intelligent Agents III Agent Theories, Architectures, and Languages (S. 1193).

    Google Scholar 

  • Fawcett, T., & Provorst, F. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1(3), 291–316.

    Article  Google Scholar 

  • Goertzel, B. (2010). Toward a formal characterization of real-world general intelligence. In E. Baum, M. Hutter, & E. Kitzelmann (Hrsg.), Proceedings of the 3rd Conference on Artificial General Intelligence, AGI (S. 19–24). Atlantis Press.

    Google Scholar 

  • Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.

    Google Scholar 

  • Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2017). When will AI exceed human performance? Evidence from AI experts. arXiv:1705.08807. https://arxiv.org/abs/1705.08807. Zugegriffen: 30. März 2018.

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2. Aufl.). New York: Springer.

    Book  Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Neural Information Processing Systems (NIPS), Proceeding. NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1 (S. 1097–1105). Lake Tahoe: Nevada.

    Google Scholar 

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  • Litjens, G., Kooi, T., Ehteshami Bejnordi, B., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42,60–88. https://doi.org/10.1016/j.media.2017.07.005.

    Article  Google Scholar 

  • Mackworth, A. K. (1993). On seeing robots. Vancouver, B.C., Canada. https://www.cs.ubc.ca/~mack/Publications/CVSTA93.pdf. Zugegriffen: 19. Jan. 2018.

  • Manhart, K. (2017). Eine kleine Geschichte der Künstlichen Intelligenz. http://www.cowo.de/a/3330537. Zugegriffen: 17. Okt. 2017.

  • Marsland, S. (2014). Machine learning: An algorithmic perspective. London: Taylor & Francis Inc.

    Book  Google Scholar 

  • Mertens, P. (1985). Künstliche Intelligenz in der Betriebswirtschaft. In D. Ohse, A. C. Esprester, H.-U. Küpper, P. Stähly, & H. Steckhan (Hrsg.), DGOR. Operations research proceedings (S. 285–292). Berlin: Springer.

    Google Scholar 

  • Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

    Google Scholar 

  • Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: The MIT Press.

    Google Scholar 

  • Newell, A., & Simon, H. (1958). Heuristic problem solving: The next advance in operations research. Operations Research, 6(1), 1–10.

    Article  Google Scholar 

  • Nilsson, N. J. (2014). Principles of artificial intelligence. Palo Alto: Tioga Press.

    Google Scholar 

  • Odagiri, H., Nakamura, Y., & Shibuya, M. (1997). Research consortia as a vehicle for basic research: The case of a fifth generation computer project in Japan. Research Policy, 26, 191–207.

    Article  Google Scholar 

  • Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to artificial general intelligence. In B. Goertzel & C. Pennachin (Hrsg.), Artificial General Intelligence: AGIRI – Artificial General Intelligence Research Institute (S. 1–28). Berlin: Springer.

    Google Scholar 

  • Polanyi, M. (1966). The tecit dimension. Gloucester: Peter Smith.

    Google Scholar 

  • Rey, G. D., & Wender, K. F. (2018). Neuronale Netze. Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. Göttingen: Hogrefe Verlag GmbH & Co. KG.

    Google Scholar 

  • Russel, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Eaglewood Cliffs: Prentice Hall Internationall Inc.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.

    Article  Google Scholar 

  • Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.

    Google Scholar 

  • Searle, J. R. (1980). Minds, brains, and programs. The Behavioral and Brain Sciences, 3, 417–457.

    Article  Google Scholar 

  • Shortlife, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., & Cohen, S. N. (1975). Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system. Computers and Biomedical Research, 8, 303–320.

    Article  Google Scholar 

  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529, 484–489.

    Article  Google Scholar 

  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Hassabis, D. (2017a). Mastering chess and Shogi by Self-Play with a general reinforcement learning algorithm. arXiv:1712.01815. https://arxiv.org/abs/1712.01815. Zugegriffen: 15. März 2018.

  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017b). Mastering the game of go without human knowledge. Nature, 550, 354–359. https://doi.org/10.1038/nature24270.

    Article  Google Scholar 

  • Zack, K. (2016). Chihuahua or muffin? https://twitter.com/teenybiscuit/status/707727863571582978. Karen Zack via Twitter.

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buxmann, P., Schmidt, H. (2019). Grundlagen der Künstlichen Intelligenz und des Maschinellen Lernens. In: Buxmann, P., Schmidt, H. (eds) Künstliche Intelligenz. Springer Gabler, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57568-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57568-0_1

  • Published:

  • Publisher Name: Springer Gabler, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57567-3

  • Online ISBN: 978-3-662-57568-0

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics