Advertisement

Grundlagen der Künstlichen Intelligenz und des Maschinellen Lernens

  • Peter Buxmann
  • Holger Schmidt
Chapter

Zusammenfassung

Die ersten Forschungsansätze im Bereich Künstliche Intelligenz stammen aus den 1950er Jahren. Dieses Kapitel skizziert Meilensteine der KI-Forschung bis hin zu den modernen Entwicklungen des Maschinellen Lernens, die den Schwerpunkt dieses Buches darstellen. Grundlegende Verfahren des Maschinellen Lernens werden im zweiten Teil dieses Kapitels erläutert, insbesondere die Funktionsweise von Künstlichen Neuronalen Netzen. Dabei wird auch auf Limitationen moderner Algorithmen eingegangen.

Literatur

  1. acatech, Hightech Forum. (2017). Fachforum autonome Systeme. Chancen und Risiken für Wirtschaft, Wissenschaft und Gesellschaft. Langversion, Abschlussbericht. Berlin.Google Scholar
  2. Anthalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017). Fooling neural networks in the physical world with 3D adversarial objects. http://www.labsix.org/physical-objects-that-fool-neural-nets/. Zugegriffen: 5. Apr. 2018.
  3. Bishop, C. (2006). Pattern recognition and machine learning. New York: Springer.Google Scholar
  4. Brynjolfsson, E., & McAfee, A. (2017). The business of artificial intelligence. Harvard Business Review. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence. Zugegriffen: 6. Jan. 2018.
  5. Carbonell, J. G., et al. (1983). An Overview of Machine Learning. In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Hrsg.), Machine Learning: An Artificial Intelligence Approach (S. 3–23). Palo Alto, Kalifornien, USA: TIOGA Publishing Co.Google Scholar
  6. Chaib-Draa, B., Moulin, B., Mandiau, R., & Millot, P. (1992). Trends in distributed artificial intelligence. Artificial Intelligence Review, 6(1), 35–66.  https://doi.org/10.1007/BF00155579.CrossRefGoogle Scholar
  7. Dartmouth College. (1956). Summer research project on artificial intelligence (Vox of Dartmouth).Google Scholar
  8. EFF. (2018). AI progress measurement. https://www.eff.org/de/ai/metrics. Zugegriffen: 11. Jan. 2018.
  9. Franklin, S., & Graesser, A. (1997). Is It an agent, or just a program?: A taxonomy for autonomous agents. In J. Müller, M. J. Wooldridge, & N. R. Jennings (Hrsg.), Intelligent Agents III Agent Theories, Architectures, and Languages (S. 1193).Google Scholar
  10. Fawcett, T., & Provorst, F. (1997). Adaptive fraud detection. Data Mining and Knowledge Discovery, 1(3), 291–316.CrossRefGoogle Scholar
  11. Goertzel, B. (2010). Toward a formal characterization of real-world general intelligence. In E. Baum, M. Hutter, & E. Kitzelmann (Hrsg.), Proceedings of the 3rd Conference on Artificial General Intelligence, AGI (S. 19–24). Atlantis Press.Google Scholar
  12. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.Google Scholar
  13. Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2017). When will AI exceed human performance? Evidence from AI experts. arXiv:1705.08807. https://arxiv.org/abs/1705.08807. Zugegriffen: 30. März 2018.
  14. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2. Aufl.). New York: Springer.CrossRefGoogle Scholar
  15. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In Neural Information Processing Systems (NIPS), Proceeding. NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1 (S. 1097–1105). Lake Tahoe: Nevada.Google Scholar
  16. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.  https://doi.org/10.1109/5.726791.CrossRefGoogle Scholar
  17. Litjens, G., Kooi, T., Ehteshami Bejnordi, B., Setio, A. A. A., Ciompi, F., Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42,60–88.  https://doi.org/10.1016/j.media.2017.07.005.CrossRefGoogle Scholar
  18. Mackworth, A. K. (1993). On seeing robots. Vancouver, B.C., Canada. https://www.cs.ubc.ca/~mack/Publications/CVSTA93.pdf. Zugegriffen: 19. Jan. 2018.
  19. Manhart, K. (2017). Eine kleine Geschichte der Künstlichen Intelligenz. http://www.cowo.de/a/3330537. Zugegriffen: 17. Okt. 2017.
  20. Marsland, S. (2014). Machine learning: An algorithmic perspective. London: Taylor & Francis Inc.CrossRefGoogle Scholar
  21. Mertens, P. (1985). Künstliche Intelligenz in der Betriebswirtschaft. In D. Ohse, A. C. Esprester, H.-U. Küpper, P. Stähly, & H. Steckhan (Hrsg.), DGOR. Operations research proceedings (S. 285–292). Berlin: Springer.Google Scholar
  22. Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.Google Scholar
  23. Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: The MIT Press.Google Scholar
  24. Newell, A., & Simon, H. (1958). Heuristic problem solving: The next advance in operations research. Operations Research, 6(1), 1–10.CrossRefGoogle Scholar
  25. Nilsson, N. J. (2014). Principles of artificial intelligence. Palo Alto: Tioga Press.Google Scholar
  26. Odagiri, H., Nakamura, Y., & Shibuya, M. (1997). Research consortia as a vehicle for basic research: The case of a fifth generation computer project in Japan. Research Policy, 26, 191–207.CrossRefGoogle Scholar
  27. Pennachin, C., & Goertzel, B. (2007). Contemporary approaches to artificial general intelligence. In B. Goertzel & C. Pennachin (Hrsg.), Artificial General Intelligence: AGIRI – Artificial General Intelligence Research Institute (S. 1–28). Berlin: Springer.Google Scholar
  28. Polanyi, M. (1966). The tecit dimension. Gloucester: Peter Smith.Google Scholar
  29. Rey, G. D., & Wender, K. F. (2018). Neuronale Netze. Eine Einführung in die Grundlagen, Anwendungen und Datenauswertung. Göttingen: Hogrefe Verlag GmbH & Co. KG.Google Scholar
  30. Russel, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach. Eaglewood Cliffs: Prentice Hall Internationall Inc.Google Scholar
  31. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323, 533–536.CrossRefGoogle Scholar
  32. Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4, 119–155.Google Scholar
  33. Searle, J. R. (1980). Minds, brains, and programs. The Behavioral and Brain Sciences, 3, 417–457.CrossRefGoogle Scholar
  34. Shortlife, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., & Cohen, S. N. (1975). Computer-based consultations in clinical therapeutics: Explanation and rule acquisition capabilities of the MYCIN system. Computers and Biomedical Research, 8, 303–320.CrossRefGoogle Scholar
  35. Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., et al. (2016). Mastering the game of go with deep neural networks and tree search. Nature, 529, 484–489.CrossRefGoogle Scholar
  36. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Hassabis, D. (2017a). Mastering chess and Shogi by Self-Play with a general reinforcement learning algorithm. arXiv:1712.01815. https://arxiv.org/abs/1712.01815. Zugegriffen: 15. März 2018.
  37. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., et al. (2017b). Mastering the game of go without human knowledge. Nature, 550, 354–359.  https://doi.org/10.1038/nature24270.CrossRefGoogle Scholar
  38. Zack, K. (2016). Chihuahua or muffin? https://twitter.com/teenybiscuit/status/707727863571582978. Karen Zack via Twitter.

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Peter Buxmann
    • 1
  • Holger Schmidt
    • 1
  1. 1.TU DarmstadtDarmstadtDeutschland

Personalised recommendations