Skip to main content

Characterization of Sound Fields Generated by Ultrasonic Transducers

  • Chapter
  • First Online:
Piezoelectric Sensors and Actuators

Part of the book series: Topics in Mining, Metallurgy and Materials Engineering ((TMMME))

  • 3591 Accesses

Abstract

The metrological characterization of sound fields represents an important step in the design and optimization of ultrasonic transducers. In this chapter, we will concentrate on the so-called light refractive tomography (LRT), which is an optical-based measurement principle. It allows noninvasive, spatially as well as temporally resolved acquisition of both, sound fields in fluids and mechanical waves in optical transparent solids. Before the history and fundamentals (e.g., tomographic reconstruction) of LRT are studied in Sects. 8.2 and 8.3, we will discuss conventional measurement principles (e.g., hydrophones) for such measuring tasks. Section 8.4 addresses the application of LRT for investigating sound fields in water. For instance, the disturbed sound field due to a capsule hydrophone will be quantified. In Sect. 8.5, LRT results for airborne ultrasound are shown and verified through microphone measurements. Finally, LRT will be exploited to quantitatively acquire the propagation of mechanical waves in optically transparent solids, which is currently impossible by means of conventional measurement principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For the sake of simplicity, the membrane deflection \(s_{\sim }\) is assumed to be uniform over the active microphone surface.

  2. 2.

    Such projections are also named Radon-transformed of \(f\!\left( x,y \right) \).

  3. 3.

    LRT is applicable for ultrasonic waves and audible sound waves. Without limiting the generality, we will concentrate on sound fields generated by ultrasound sources.

  4. 4.

    Function \(f\!\left( x \right) =\mathrm {e}^{-\alpha x^2}\); Fourier transform \(F\!\left( \nu \right) =\sqrt{\pi /\alpha } \cdot \mathrm {e}^{-(\pi \nu )^2 / \alpha }\) [8].

  5. 5.

    Geometric dimension of the plotted cross sections (in parallel to the xy-plane): \(x\times y=[-10\,\text {mm},10\,\text {mm}]\times [-10\,\text {mm},10\,\text {mm}]\).

  6. 6.

    Geometric dimension of the plotted cross sections (in parallel to the xy-plane): \(x\times y=[-25\,\text {mm},25\,\text {mm}]\times [-25\,\text {mm},25\,\text {mm}]\).

  7. 7.

    Geometric dimension of the plotted cross sections (in parallel to the xy-plane): \(x\times y=[-10,10\,\text {mm}]\times [-10,10\,\text {mm}]\).

  8. 8.

    \(2\cdot 24.4{-}15.4\,\text {mm} = 33.4\,\text {mm}\)

References

  1. Almqvist, M., Holm, A., Jansson, T., Persson, H., Lindström, K.: High resolution light diffraction tomography: nearfield measurements of 10 MHz continuous wave ultrasound. Ultrasonics 37(5), 343–353 (1999)

    Article  CAS  Google Scholar 

  2. Asher, R.C.: Ultrasonic Sensors. Institute of Physics Publishing, Bristol (1997)

    Google Scholar 

  3. Bacon, D.R.: Characteristics of a PVDF membrane hydrophone for use in the range 1-100 MHz. IEEE Trans. Sonics Ultrason. SU-29(1), 18–25 (1982)

    Article  Google Scholar 

  4. Bacon, D.R.: Primary calibration of ultrasonic hydrophone using optical interferometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35(2), 152–161 (1988)

    Article  CAS  Google Scholar 

  5. Bahr, L., Lerch, R.: Beam profile measurements using light refractive tomography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55(2), 405–414 (2008)

    Article  Google Scholar 

  6. Bodmann, V.O.: Partielle spezifische Refraktionen von Polymethylmethacrylat und Polystyrol. I. Einfluss verschiedener Lösungsmittel. Die. Makromolekulare Chemie 122(1), 196–209 (1969)

    Article  CAS  Google Scholar 

  7. Born, M., Wolf, E., Bhatia, A.B., Clemmow, P.C., Gabor, D., Stokes, A.R., Taylor, A.M., Wayman, P.A., Wilcock, W.L.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  8. Bronstein, I.N., Semendjajew, K.A., Musiol, G., Mühlig, H.: Handbook of Mathematics, 6h edn. Springer, Berlin (2015)

    Google Scholar 

  9. Brüel & Kjær: Product Portfolio (2018). Homepage: http://www.bksv.com

  10. Buzug, T.M.: Computed Tomography, 6th edn. Springer, Berlin (2008)

    Google Scholar 

  11. Chen, L.: Light refractive tomography for noninvasive ultrasound measurements in various media. Ph.D. thesis, Friedrich-Alexander-University Erlangen-Nuremberg (2014)

    Google Scholar 

  12. Chen, L., Rupitsch, S.J., Grabinger, J., Lerch, R.: Quantitative reconstruction of ultrasound fields in optically transparent isotropic solids. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61(4), 685–695 (2014)

    Article  Google Scholar 

  13. Chen, L., Rupitsch, S.J., Lerch, R.: Application of light refractive tomography for reconstructing ultrasound fields in various media. Tech. Messen. 79(10), 459–463 (2012)

    Article  Google Scholar 

  14. Chen, L., Rupitsch, S.J., Lerch, R.: A reliability study of light refractive tomography utilized for noninvasive measurement of ultrasound pressure fields. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(5), 915–927 (2012)

    Article  Google Scholar 

  15. Chen, L., Rupitsch, S.J., Lerch, R.: Quantitative reconstruction of a disturbed ultrasound pressure field in a conventional hydrophone measurement. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(6), 1199–1206 (2013)

    Article  Google Scholar 

  16. Ciddor, P.E.: Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35(9), 1566–1572 (1996)

    Article  CAS  Google Scholar 

  17. General Electrics (GE): Product portfolio (2018). Homepage: https://www.gemeasurement.com

  18. Harvey, G., Gachagan, A.: Noninvasive field measurement of low-frequency ultrasonic transducers operating in sealed vessels. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(10), 1749–1758 (2006)

    Article  Google Scholar 

  19. Hecht, E.: Optics, 5th edn. Pearson, London (2016)

    Google Scholar 

  20. Herman, G.T.: Fundamentals of Computerized Tomography. Springer, Berlin (2009)

    Book  Google Scholar 

  21. Huttunen, T., Kaipio, J.P., Hynynen, K.: Modeling of anomalies due to hydrophones in continuous-wave ultrasound fields. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(11), 1486–1500 (2003)

    Article  Google Scholar 

  22. Jia, X., Quentin, G., Lassoued, M.: Optical heterodyne detection of pulsed ultrasonic pressures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40(1), 67–69 (1993)

    Article  CAS  Google Scholar 

  23. Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. Society of Industrial and Applied Mathematics (2001)

    Google Scholar 

  24. Koch, C.: Status report PTB. In: Consultative Committee for Acoustics, Ultrasound and Vibration (2008). CCAUV/08-09

    Google Scholar 

  25. Koch, C., Molkenstruck, W.: Primary calibration of hydrophones with extended frequency range 1 to 70 MHz using optical interferometry. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(5), 1303–1314 (1999)

    Article  CAS  Google Scholar 

  26. Lerch, R., Sessler, G.M., Wolf, D.: Technische Akustik: Grundlagen und Anwendungen. Springer, Berlin (2009)

    Book  Google Scholar 

  27. Matar, O.B., Pizarro, L., Certon, D., Remenieras, J.P., Patat, F.: Characterization of airborne transducers by optical tomography. Ultrasonics 38(1), 787–793 (2000)

    Article  Google Scholar 

  28. Neumann, T., Ermert, H.: A new designed schlieren system for the visualization of ultrasonic pulsed wave fields with high spatial and temporal resolution. In: Proceedings of International IEEE Ultrasonics Symposium (IUS), pp. 244–247 (2006)

    Google Scholar 

  29. Olympus Corporation: Product Portfolio (2018). Homepage: https://www.olympus-ims.com

  30. ONDA Corporation: Product Portfolio of Hydrophones (2018). Homepage: http://www.ondacorp.com

  31. Physik Instrumente (PI) GmbH & Co. KG: Product Portfolio (2018). Homepage: https://www.physikinstrumente.com/en/

  32. Polytec GmbH: Product Portfolio (2018). Homepage: http://www.polytec.com

  33. PTB: Calibration Certificate for HGL-0400 (sn:1375) with preamp AH-2010 (sn:1028) and DC Block AH-2010DCBNS (sn:0015). Physikalisch-Technische Bundesanstalt (PTB) (2012). Calibration mark: 1.62/16002 PTB 12

    Google Scholar 

  34. Quimby, R.S.: Photonics and Lasers. Wiley, New York (2006)

    Book  Google Scholar 

  35. Radon, J.: Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Berichte über die Verhandlungen der Königlich-Sächsischen Akademie der Wissenschaften zu Leipzig 69, 262–277 (1917)

    Google Scholar 

  36. Reibold, R.: Light diffraction tomography applied to the investigation of ultrasonic fields. Part II: Standing waves. Acta Acustica united with Acustica 63(4), 283–289 (1987)

    Google Scholar 

  37. Reibold, R., Molkenstruck, W.: Light diffraction tomography applied to the investigation of ultrasonic fields. Part I: Continuous waves. Acustica 56(3), 180–192 (1984)

    Google Scholar 

  38. Rupitsch, S.J., Chen, L., Winter, P., Lerch, R.: Quantitative measurement of airborne ultrasound utilizing light refractive tomography. In: Proceedings of Sensors and Measuring Systems (ITG/GMA Symposium), pp. 1–5 (2014)

    Google Scholar 

  39. Schneider, B.: Quantitative analysis of pulsed ultrasonic beam patterns using a Schlieren system. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43(6), 1181–1186 (1996)

    Article  Google Scholar 

  40. Scruby, C.B., Drain, L.E.: Laser Ultrasonics. Adam Hilger (1990)

    Google Scholar 

  41. Sessler, G.M.: Electrets, 2nd edn. Springer, Berlin (1987)

    Book  Google Scholar 

  42. Sessler, G.M., West, J.E.: Self-biased condenser microphone with high capacitance. J. Acoust. Soc. Am. 34(11), 1787–1788 (1962)

    Article  Google Scholar 

  43. Settles, G.S.: Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media. Experimental Fluid Mechanics. Springer, Berlin (2001)

    Book  Google Scholar 

  44. Silfvast, W.T.: Laser Fundamentals, 2nd edn. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  45. Staudenraus, J., Eisenmenger, W.: Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water. Ultrasonics 31(4), 267–273 (1993)

    Article  Google Scholar 

  46. Tektronix, Inc.: Product Portfolio (2018). Homepage: https://www.tek.com

  47. Thévenaz, P., Blu, T., Unser, M.: Interpolation revisited - medical images application. IEEE Trans. Med. Imaging 19(7), 739–758 (2000)

    Article  Google Scholar 

  48. Träger, F.: Handbook of Lasers and Optics. Springer, Berlin (2007)

    Book  Google Scholar 

  49. Unverzagt, C., Olfert, S., Henning, B.: A new method of spatial filtering for schlieren visualization of ultrasound wave fields. Phys. Proc. 3(1), 935–942 (2010)

    Article  CAS  Google Scholar 

  50. Wilkens, V., Molkenstruck, W.: Broadband PVDF membrane hydrophone for comparisons of hydrophone calibration methods up to 140 MHz. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(9), 1784–1791 (2007)

    Article  Google Scholar 

  51. Yadav, H.S., Murty, D.S., Verma, S.N., Sinha, K.H.C., Gupta, B.M., Chand, D.: Measurement of refractive index of water under high dynamic pressures. J. Appl. Phys. 44(5), 2197–2200 (1973)

    Article  Google Scholar 

  52. Zagar, B.G.: Laser interferometer displacement sensors. In: The Measurement, Instrumentation and Sensors Handbook, pp. 6–65–6–77. CRC Press, Boca Raton (2011)

    Google Scholar 

  53. Zakharin, B., Stricker, J.: Schlieren systems with coherent illumination for quantitative measurements. Appl. Opt. 43(25), 4786–4795 (2004)

    Article  Google Scholar 

  54. Zernike, F.: Phase contrast, a new method for the microscopic observation of transparent objects. Part II. Physica 9(10), 974–986 (1942)

    Google Scholar 

  55. Zipser, L., Franke, H.: Laser-scanning vibrometry for ultrasonic transducer development. Sens. Actuators A Phys. 110(1–3), 264–268 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Johann Rupitsch .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rupitsch, S.J. (2019). Characterization of Sound Fields Generated by Ultrasonic Transducers. In: Piezoelectric Sensors and Actuators. Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57534-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57534-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57532-1

  • Online ISBN: 978-3-662-57534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics