Cross-Linking of Biological Components for Stem Cell Culture

  • Binata Joddar
  • Yoshihiro ItoEmail author
Part of the Springer Series in Biomaterials Science and Engineering book series (SSBSE, volume 12)


Hydrogel is a three-dimensionally cross-linked material made of water-soluble polymers. Here, we describe the use of cross-linked biological components, including polysaccharide, proteins, and cells, for stem cell culture matrices. The cross-linked materials can be conveniently prepared and stably stored until utilization.


Decellularized ECM Chemical cross-linking Stem cell culture Pluripotency Differentiation 



The authors thank Ms. Shweta Anilkumar, PhD candidate at the University of Texas at El Paso for editing and proofing the text and figures. This research was supported by JSPS KAKENHI Grant Number 22220009.


  1. 1.
    Zonca M Jr, Xie Y (2012) Chemically modified micro- and nanostructured systems for pluripotent stem cell culture. Bio Nano Sci 2:287–304Google Scholar
  2. 2.
    Amit M, Carpenter MK, Inokuma MS, Chiu C-P, Harris CP, Waknitz MA et al (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278CrossRefGoogle Scholar
  3. 3.
    Price P, Goldsborough M, Tilkins M (1998) Embryonic stem cell serum replacement. WO Patent 1,998,030,679Google Scholar
  4. 4.
    Joddar B, Hoshiba T, Chen GP, Ito Y (2014) Stem cell culture using cell-derived substrates. Biomater Sci 2(11):1595–1603CrossRefGoogle Scholar
  5. 5.
    Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD et al (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotech 19:971–974CrossRefGoogle Scholar
  6. 6.
    Kohen N, Little L, Healy K (2009) Characterization of Matrigel interfaces during defined human embryonic stem cell culture. Biointerphases 4:69–79CrossRefGoogle Scholar
  7. 7.
    Rowland TJ, Miller LM, Blaschke AJ, Doss EL, Bonham AJ, Hikita ST et al (2010) Roles of integrins in human induced pluripotent stem cell growth on Matrigel and vitronectin. Stem Cell Dev 19:1231–1240CrossRefGoogle Scholar
  8. 8.
    Singh MD, Kreiner M, McKimmie CS, Holt S, van der Walle CF, Graham GJ (2009) Dimeric integrin α5β1 ligands confer morphological and differentiation responses to murine embryonic stem cells. Biochem Biophys Res Commun 390:716–721CrossRefGoogle Scholar
  9. 9.
    Heydarkhan-Hagvall S, Gluck JM, Delman C, Jung M, Ehsani N, Full S et al (2012) The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials 33:2032–2040CrossRefGoogle Scholar
  10. 10.
    Marinkovich MP (2007) Laminin 332 in squamous-cell carcinoma. Nat Rev Cancer 7:370–380CrossRefGoogle Scholar
  11. 11.
    Rodin S, Domogatskaya A, Strom S, Hansson EM, Chien KR, Inzunza J et al (2010) Long-term self-renewal of human pluripotent stem cells on human recombinant laminin-511. Nat Biotech 28:611–615CrossRefGoogle Scholar
  12. 12.
    Miyazaki T, Futaki S, Suemori H, Taniguchi Y, Yamada M, Kawasaki M et al (2012) Laminin E8 fragments support efficient adhesion and expansion of dissociated human pluripotent stem cells. Nat Commun 3:1236CrossRefGoogle Scholar
  13. 13.
    Elefanty AG, Stanley EG (2010) Defined substrates for pluripotent stem cells: are we there yet? Nat Meth 7:967–968CrossRefGoogle Scholar
  14. 14.
    Klim JR, Li L, Wrighton PJ, Piekarczyk MS, Kiessling LL (2010) A defined glycosaminoglycan-binding substratum for human pluripotent stem cells. Nat Meth 7:989–994CrossRefGoogle Scholar
  15. 15.
    Melkoumian Z, Weber JL, Weber DM, Fadeev AG, Zhou Y, Dolley-Sonneville P et al (2010) Synthetic peptide-acrylate surfaces for long-term self-renewal and cardiomyocyte differentiation of human embryonic stem cells. Nat Biotech 28:606–610CrossRefGoogle Scholar
  16. 16.
    Villa-Diaz LG, Nandivada H, Ding J, Nogueira-de-Souza NC, Krebsbach PH, O’Shea KS et al (2010) Synthetic polymer coatings for long-term growth of human embryonic stem cells. Nat Biotech 28:581–583CrossRefGoogle Scholar
  17. 17.
    Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI et al (2010) Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 9:768–778CrossRefGoogle Scholar
  18. 18.
    Brafman DA, Chang CW, Fernandez A, Willert K, Varghese S, Chien S (2010) Long-term human pluripotent stem cell self-renewal on synthetic polymer surfaces. Biomaterials 31:9135–9144CrossRefGoogle Scholar
  19. 19.
    Serra M, Brito C, Correia C, Alves PM (2012) Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol 30:350–359CrossRefGoogle Scholar
  20. 20.
    Lai J, Ma D (2013) Glutaraldehyde cross-linking of amniotic membranes affects their nanofibrous structures and limbal epithelial cell culture characteristics. Int J Nanomedicine 8:4157–4168CrossRefGoogle Scholar
  21. 21.
    Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137AGoogle Scholar
  22. 22.
    Bowes J, Cater C (1966) The reaction of glutaraldehyde with proteins and other biological materials. J R Microsc Soc 85:193–200CrossRefGoogle Scholar
  23. 23.
    Fraenkel-Conrat H, Olcott HS (1948) The reaction of formaldehyde with proteins. V. Cross-linking between amino and primary amide or guanidyl groups. J Am Chem Soc 70:2673–2684CrossRefGoogle Scholar
  24. 24.
    Habeeb A, Hiramoto R (1968) Reaction of proteins with glutaraldehyde. Arch Biochem Biophys 126:16–26CrossRefGoogle Scholar
  25. 25.
    Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58CrossRefGoogle Scholar
  26. 26.
    Kusumi A, Suzuki K (2005) Toward understanding the dynamics of membrane-raft-based molecular interactions. Biochim Biophys Acta 1746:234–251CrossRefGoogle Scholar
  27. 27.
    Stein J, Borzillo GV, Rettenmier CW (1990) Direct stimulation of cells expressing receptors for macrophage colony-stimulating factor (CSF-1) by a plasma membrane-bound precursor of human CSF-1. Blood 76:1308–1314Google Scholar
  28. 28.
    Gualtieri R, Shadduck R, Baker D, Quesenberry P (1984) Hematopoietic regulatory factors produced in long-term murine bone marrow cultures and the effect of in vitro irradiation. Blood 64:516–525Google Scholar
  29. 29.
    Naparstek E, Donnelly T, Shadduck RK, Waheed A, Wagner K, Kase KR et al (1986) Persistent production of colony stimulating factor (CSF-1) by cloned bone marrow stromal cell line D2XRII after X-irradiation. J Cell Physio 126:407–413CrossRefGoogle Scholar
  30. 30.
    Yaeger PC, Stiles CD, Rollins BJ (1991) Human keratinocyte growth promoting activity on the surface of fibroblasts. J Cell Physio 149:110–116CrossRefGoogle Scholar
  31. 31.
    Verfaillie C, Catanzaro P (1996) Direct contact with stroma inhibits proliferation of human long-term culture initiating cells. Leukemia 10:498Google Scholar
  32. 32.
    Higashiyama S, Iwamoto R, Goishi K, Raab G, Taniguchi N, Klagsbrun M et al (1995) The membrane protein CD9/DRAP 27 potentiates the juxtacrine growth factor activity of the membrane-anchored heparin-binding EGF-like growth factor. J Cell Biol 128:929–938CrossRefGoogle Scholar
  33. 33.
    Roy V, Verfaillie CM (1997) Soluble factor (s) produced by adult bone marrow stroma inhibit in vitro proliferation and differentiation of fetal liver BFU-E by inducing apoptosis. J Clin Invest 100:912CrossRefGoogle Scholar
  34. 34.
    Meissner P, Schröder B, Herfurth C, Biselli M (1999) Development of a fixed bed bioreactor for the expansion of human hematopoietic progenitor cells. Cytotechnology 30:227–234CrossRefGoogle Scholar
  35. 35.
    Ito Y, Hasauda H, Kitajima T, Kiyono T (2006) Ex vivo expansion of human cord blood hematopoietic progenitor cells using glutaraldehyde-fixed human bone marrow stromal cells. J Biosci Bioeng 102:467–469CrossRefGoogle Scholar
  36. 36.
    Ito Y, Kawamorita M, Yamabe T, Kiyono T, Miyamoto K (2007) Chemically fixed nurse cells for culturing murine or primate embryonic stem cells. J Biosci Bioeng 103:113–121CrossRefGoogle Scholar
  37. 37.
    Joddar B, Nishioka C, Takahashi E, Ito Y (2015) Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. J Mater Chem B 3:2301–2307CrossRefGoogle Scholar
  38. 38.
    Yue X-S, Fujishiro M, Nishioka C, Arai T, Takahashi E, Gong J-S et al (2012) Feeder cells support the culture of induced pluripotent stem cells even after chemical fixation. PLoS One 7:e32707CrossRefGoogle Scholar
  39. 39.
    Vazin T, Chen J, Lee C-T, Amable R, Freed WJ (2008) Assessment of stromal derived inducing activity in the generation of dopaminergic neurons from human embryonic stem cells. Stem Cells 26:1517–1525CrossRefGoogle Scholar
  40. 40.
    Lee J, Wang JB, Bersani F, Parekkadan B (2013) Capture and printing of fixed stromal cell membranes for bioactive display on PDMS surfaces. Langmuir 29:10611–10616CrossRefGoogle Scholar
  41. 41.
    Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27:3675–3683Google Scholar
  42. 42.
    Hoshiba T, Kawazoe N, Tateishi T, Chen G (2009) Development of stepwise osteogenesis-mimicking matrices for the regulation of mesenchymal stem cell functions. J Biol Chem 284:31164–31173CrossRefGoogle Scholar
  43. 43.
    Hoshiba T, Lu H, Kawazoe N, Chen G (2010) Decellularized matrices for tissue engineering. Expert Opin Biol Ther 10:1717–1728CrossRefGoogle Scholar
  44. 44.
    Datta N, Holtorf HL, Sikavitsas VI, Jansen JA, Mikos AG (2005) Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials 26:971–977CrossRefGoogle Scholar
  45. 45.
    Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. PNAS 103:2488–2493CrossRefGoogle Scholar
  46. 46.
    Jiang T, Ren X-J, Tang J-L, Yin H, Wang K-J, Zhou C-L (2013) Preparation and characterization of genipin-crosslinked rat acellular spinal cord scaffolds. Mater Sci Eng C 33:3514–3521CrossRefGoogle Scholar
  47. 47.
    Zhai W, Lü X, Chang J, Zhou Y, Zhang H (2010) Quercetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater 6:389–395CrossRefGoogle Scholar
  48. 48.
    Chen X-D, Dusevich V, Feng JQ, Manolagas SC, Jilka RL (2007) Extracellular matrix made by bone marrow cells facilitates expansion of marrow-derived mesenchymal progenitor cells and prevents their differentiation into osteoblasts. J Bone Miner Res 22:1943–1956CrossRefGoogle Scholar
  49. 49.
    Hoshiba T, Kawazoe N, Tateishi T, Chen G (2010) Development of extracellular matrices mimicking stepwise adipogenesis of mesenchymal stem cells. Adv Mater 22:3042–3047CrossRefGoogle Scholar
  50. 50.
    Hoshiba T, Kawazoe N, Chen G (2011) Mechanism of regulation of PPARG expression of mesenchymal stem cells by osteogenesis-mimicking extracellular matrices. Biosci Biotechnol Biochem 75:2099–2104CrossRefGoogle Scholar
  51. 51.
    Hoshiba T, Kawazoe N, Chen G (2012) The balance of osteogenic and adipogenic differentiation in human mesenchymal stem cells by matrices that mimic stepwise tissue development. Biomaterials 33:2025–2031CrossRefGoogle Scholar
  52. 52.
    Rajabi-Zeleti S, Jalili-Firoozinezhad S, Azarnia M, Khayyatan F, Vahdat S, Nikeghbalian S et al (2014) The behavior of cardiac progenitor cells on macroporous pericardium-derived scaffolds. Biomaterials 35:970–982CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Nano Medical Engineering Laboratory, RIKENWako-shiJapan
  2. 2.Metallurgy, Materials Science and Biomedical Engineering Department, M201J Engineering BuildingUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations