Skip to main content

Vom Schmerzsyndrom zur Schmerztherapie

  • Chapter
  • First Online:
Praktische Schmerzmedizin

Part of the book series: Springer Reference Medizin ((SRM))

Zusammenfassung

Schmerzen sind im Akutstadium eine protektive Reaktion des Körpers, um sich vor potenziellen Gewebeschädigungen zu schützen. An dieser protektiven Reaktion sind sowohl sensorische Afferenzen als auch somatische und vegetative motorische Efferenzen beteiligt. Daneben spielen assoziierte kognitive, affektive und endokrine Komponenten eine Rolle. Akutschmerzen sind häufig vorübergehender Natur und lassen sich einer Ursache zuordnen, die kausal oder symptomatisch behandelt werden kann. Chronische Schmerzen dagegen unterliegen nicht mehr physiologischen protektiven Reaktionen des Körpers. Sie stellen eine eigenständige Schmerzkrankheit dar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Baron R (2006) Mechanisms of disease; neuropathic pain – a clinical perspective. Nat Clin Pract Neurol 2:95–106

    Article  PubMed  Google Scholar 

  • Baron R, Binder A, Wasner G (2010) Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurol 9:807–819

    Article  PubMed  Google Scholar 

  • Baron R, Förster M, Binder A (2012) Subgrouping of patients with neuropathic pain according to pain-related sensory abnormalities: a first step to a stratified treatment approach. Lancet Neurol 11:999–1005

    Article  PubMed  Google Scholar 

  • Baron R, Maier C et al (2017) Peripheral neuropathic pain: a mechanism-related organizing principle based on somatosensory profiles. Pain 158(2):261–272

    Article  PubMed  Google Scholar 

  • Caterina MJ, Leffler A et al (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313

    Article  CAS  PubMed  Google Scholar 

  • Coull JA, Boudreau D et al (2003) Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 424:938–942

    Article  CAS  PubMed  Google Scholar 

  • Coull JA, Beggs S et al (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 438:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craig AD, Bushnell MC (1994) The thermal grill illusion: unmasking the burn of cold pain. Science 265:252–255

    Article  CAS  PubMed  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    Article  CAS  PubMed  Google Scholar 

  • Demant DT, Lund K et al (2014) The effect of oxcarbazepine in peripheral neuropathic pain depends on pain phenotype: a randomised, double-blind, placebo-controlled phenotype-stratified study. Pain 155(11):2263–2273

    Article  CAS  PubMed  Google Scholar 

  • Demant DT, Lund K et al (2015) Pain relief with lidocaine 5 % patch in localized peripheral neuropathic pain in relation to pain phenotype: a randomized, double-blind, and placebo-controlled, phenotype panel study. Pain 156(11):2234–2244

    Article  CAS  PubMed  Google Scholar 

  • Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Fields HL, Rowbotham M et al (1998) Postherpetic neuralgia: irritable nociceptors and deafferentation. Neurobiol Dis 5:209–227

    Article  CAS  PubMed  Google Scholar 

  • Geber C, Magerl W, Fondel R, Fechir M, Rolke R, Vogt T, Treede RD, Birklein F (2008) Numbness in clinical and experimental pain – a cross-sectional study exploring the mechanisms of reduced tactile function. Pain 139:73–81

    Article  PubMed  Google Scholar 

  • Hains BC, Saab CY et al (2004) Altered sodium channel expression in second-order spinal sensory neurons contributes to pain after peripheral nerve injury. J Neurosci 24:4832–4839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hehn C von, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627

    Article  CAS  PubMed  Google Scholar 

  • Hudson LJ, Bevan S et al (2001) VR1 protein expression increases in undamaged DRG neurons after partial nerve injury. Eur J Neurosci 13:2105–2114

    Article  CAS  PubMed  Google Scholar 

  • Jänig W (2008) Autonomic nervous system and pain. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (Hrsg) The senses: a comprehensive reference, vol 5: pain. Elsevier Academic Press, San Diego, S 193–226

    Chapter  Google Scholar 

  • Ji RR, Woolf CJ (2001) Neuronal plasticity and signal transduction in nociceptive neurons: implications for the initiation and maintenance of pathological pain. Neurobiol Dis 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Johanek L, Shim B, Meyer A (2006) Primary hyperalgesia and nociceptor sensitization. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 35–47

    Google Scholar 

  • Konopka KH, Harbers M et al (2012) Bilateral sensory abnormalities in patients with unilateral neuropathic pain; a quantitative sensory testing (QST) study. PLoS One 7(5):e37524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai JJ, Hunter C et al (2003) The role of voltage-gated sodium channels in neuropathic pain. Curr Opin Neurobiol 13:291–297

    Article  CAS  PubMed  Google Scholar 

  • Loeser JD, Ward AA Jr, White LE Jr (1968) Deafferentiation of the -human spinal cord neurons. J Neurosurg 29:48–50

    Article  CAS  PubMed  Google Scholar 

  • Lombard MC, Larabi Y (1983) Electrophysiological study of cervical dorsal horn cells in partially deafferented rats. In: Bonica JJ (Hrsg) Advances in pain research and therapy. Raven, New York, S 147–154

    Google Scholar 

  • Luo ZD, Chaplan SR et al (2001) Upregulation of dorsal root ganglion (alpha)2 (delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats. J Neurosci 21:1868–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maier C, Baron R, Tölle T et al (2012) Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in 1236 patients with different neuropathic pain syndromes. Pain 150:439–450

    Article  Google Scholar 

  • Marchand F, Perretti M et al (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  CAS  PubMed  Google Scholar 

  • McKemy DD (2005) How cold is it? TRPM8 and TRPA1 in the molecular logic of cold sensation. Mol Pain 1:16

    Article  PubMed  PubMed Central  Google Scholar 

  • McKemy DD, Neuhausser WM et al (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  • McMahon SB, Cafferty WB et al (2005) Immune and glial cell factors as pain mediators and modulators. Exp Neurol 192:444–462

    Article  CAS  PubMed  Google Scholar 

  • Milligan ED, O’Connor KA et al (2001) Intrathecal HIV-1 envelope glycoprotein gp120 induces enhanced pain states mediated by spinal cord proinflammatory cytokines. J Neurosci 21:2808–2819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nickel FT, Seifert F et al (2011) Mechanisms of neuropathic pain. Eur Neuropsychopharmacol 22:81–91

    Article  PubMed  Google Scholar 

  • Nystrom B, Hagbarth KE (1981) Microelectrode recordings from transected nerves in amputees with phantom limb pain. Neurosci Lett 27:211–216

    Article  CAS  PubMed  Google Scholar 

  • Oaklander AL, Brown JM (2004) Unilateral nerve injury produces bilateral loss of distal innervation. Ann Neurol 55:639–644

    Article  PubMed  Google Scholar 

  • Oaklander AL, Romans K et al (1998) Unilateral postherpetic neuralgia is associated with bilateral sensory neuron damage. Ann Neurol 44:789–795

    Article  CAS  PubMed  Google Scholar 

  • Obata K, Katsura H et al (2005) TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury. J Clin Invest 115:2393–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochoa JL, Yarnitsky D (1993) Mechanical hyperalgesias in neuropathic pain patients: dynamic and static subtypes. Ann Neurol 33:465–472

    Article  CAS  PubMed  Google Scholar 

  • Ochoa J, Torebjörk HE et al (1982) Abnormal spontaneous activity in single sensory nerve fibers in humans. Muscle Nerve 5(9S):S74–S77

    CAS  PubMed  Google Scholar 

  • Omana-Zapata I, Khabbaz MA et al (1997) Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 72:41–49

    Article  CAS  PubMed  Google Scholar 

  • Ossipov MH, Porreca F (2006) Descending excitatory systems. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 193–210

    Google Scholar 

  • Pertovaara A, Almeida A (2006) Descending inhibitory systems. In: Cevero F, Jensen TS (Hrsg) Handbook of clinical neurology, vol 81 (3rd series). Elsevier B.V, Amsterdam, S 179–192

    Google Scholar 

  • Polgar E, Gray S et al (2004) Lack of evidence for significant neuronal loss in laminae I-III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111:144–150

    Article  CAS  PubMed  Google Scholar 

  • Price MP, McIlwrath SL et al (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Reimer M, Rempe T, Diedrichs C, Baron R, Gierthmühlen J (2016) Sensitization of the nociceptive system in complex regional pain syndrome. PLoSOne 11(5):e0154553

    Article  Google Scholar 

  • Shamash S, Reichert F et al (2002) The cytokine network of Wallerian degeneration: tumor necrosis factor-alpha, interleukin-1alpha, and interleukin-1beta. J Neurosci 22:3052–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommer C (2001) Cytokines in neuropathic pain. Anaesthesist 50:416–426

    Article  CAS  PubMed  Google Scholar 

  • Tal M, Bennett GJ (1994) Extra-territorial pain in rats with a peripheral mononeuropathy: mechano-hyperalgesia and mechano-allodynia in the territory of an uninjured nerve. Pain 57:375–382

    Article  CAS  PubMed  Google Scholar 

  • Vetter I, Deuis JR et al (2017) Nav1.7 as a pain target – from gene to pharmacology. Pharmacol Ther 172:73–100

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Milligan ED et al (2001a) Glial activation: a driving force for pathological pain. Trends Neurosci 24:450–455

    Article  CAS  PubMed  Google Scholar 

  • Watkins LR, Milligan ED et al (2001b) Spinal cord glia: new players in pain. Pain 93:201–205

    Article  CAS  PubMed  Google Scholar 

  • Wieseler-Frank J, Maier SF et al (2004) Glial activation and pathological pain. Neurochem Int 45:389–395

    Article  CAS  PubMed  Google Scholar 

  • Wood JN, Boorman JP et al (2004) Voltage-gated sodium channels and pain pathways. J Neurobiol 61:55–71

    Article  CAS  PubMed  Google Scholar 

  • Yarnitsky D, Granot M et al (2012) Conditioned pain modulation predicts duloxetine efficacy in painful diabetic neuropathy. Pain 153:1193–1198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janne Gierthmühlen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gierthmühlen, J., Baron, R. (2019). Vom Schmerzsyndrom zur Schmerztherapie. In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer Reference Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57487-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-57487-4_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-57486-7

  • Online ISBN: 978-3-662-57487-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics