Parameter Estimation, Forecasting, Gap Filling

  • Nina Golyandina
  • Anton Korobeynikov
  • Anatoly Zhigljavsky
Part of the Use R! book series (USE R)


Chapter 3 is devoted to applications of SSA for one-dimensional series for forecasting, gap filling, low-rank approximation, parameter estimation, and change-point detection. The SSA analysis of time series of Chap.  2 is model-free. Methods of Chap. 3, on the contrary, are model-based. The model is constructed on the base of the approximating subspace built in the process of performing the SSA analysis of Chap.  2. The main parametric model is a linear recurrence relation which the signal should approximately satisfy. Application of methods is illustrated on real-life data.


  1. Badeau R, Richard G, David B (2004) Sliding window adaptive SVD algorithms. IEEE Trans Signal Process 52(1):1–10MathSciNetCrossRefGoogle Scholar
  2. Barkhuijsen H, de Beer R, van Ormondt D (1987) Improved algorithm for noniterative time-domain model fitting to exponentially damped magnetic resonance signals. J Magn Reson 73:553–557CrossRefGoogle Scholar
  3. Basseville M, Nikiforov IV, et al (1993) Detection of abrupt changes: theory and application, vol 104. Prentice Hall, Englewood CliffsGoogle Scholar
  4. Beckers J, Rixen M (2003) EOF calculations and data filling from incomplete oceanographic data sets. Atmos Ocean Technol 20:1839–1856CrossRefGoogle Scholar
  5. Cadzow JA (1988) Signal enhancement: a composite property mapping algorithm. IEEE Trans Acoust 36(1):49–62MathSciNetCrossRefGoogle Scholar
  6. Du K, Zhao Y, Lei J (2017) The incorrect usage of singular spectral analysis and discrete wavelet transform in hybrid models to predict hydrological time series. J Hydrol 552:44–51CrossRefGoogle Scholar
  7. Gillard J, Kvasov D (2016) Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat Interface 10(1):59–70MathSciNetCrossRefGoogle Scholar
  8. Gillard J, Zhigljavsky A (2011) Analysis of structured low rank approximation as an optimization problem. Informatica 22(4):489–505Google Scholar
  9. Gillard J, Zhigljavsky A (2013) Optimization challenges in the structured low rank approximation problem. J Global Optim 57(3):733–751MathSciNetCrossRefGoogle Scholar
  10. Gillard J, Zhigljavsky AA (2016) Weighted norms in subspace-based methods for time series analysis. Numer Linear Algebra Appl 23(5):947–967MathSciNetCrossRefGoogle Scholar
  11. Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with missing values. J Stat Plan Inference 137(8):2642–2653MathSciNetCrossRefGoogle Scholar
  12. Golyandina N, Zhigljavsky A (2013) Singular spectrum analysis for time series. Springer briefs in statistics. SpringerCrossRefGoogle Scholar
  13. Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman&Hall/CRCCrossRefGoogle Scholar
  14. Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78CrossRefGoogle Scholar
  15. Hyndman RJ (2017) forecast: Forecasting functions for time series and linear models. URL, R package version 8.1, with contributions from Slava Razbash and Drew Schmidt
  16. Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2):151–159CrossRefGoogle Scholar
  17. Markovsky I (2012) Low rank approximation. SpringerCrossRefGoogle Scholar
  18. Markovsky I, Usevich K (2014) Software for weighted structured low-rank approximation. J Comput Appl Math 256:278–292MathSciNetCrossRefGoogle Scholar
  19. Markovsky I, Willems JC, Van Huffel S, De Moor B (2006) Exact and approximate modeling of linear systems: A behavioral approach, vol 11. SIAMCrossRefGoogle Scholar
  20. Moskvina V, Zhigljavsky A (2003) An algorithm based on singular spectrum analysis for change-point detection. Commun Stat Simul Comput 32(2):319–352MathSciNetCrossRefGoogle Scholar
  21. Nekrutkin V (2010) Perturbation expansions of signal subspaces for long signals. Stat Interface 3:297–319MathSciNetCrossRefGoogle Scholar
  22. Real E, Tufts D, Cooley JW (1999) Two algorithms for fast approximate subspace tracking. IEEE Trans Signal Process 47(7):1936–1945CrossRefGoogle Scholar
  23. Rodrigues PC, de Carvalho M (2013) Spectral modeling of time series with missing data. Appl Math Modell 37(7):4676–4684MathSciNetCrossRefGoogle Scholar
  24. Roy R, Kailath T (1989) ESPRIT: estimation of signal parameters via rotational invariance techniques. IEEE Trans Acoust 37:984–995CrossRefGoogle Scholar
  25. Schoellhamer D (2001) Singular spectrum analysis for time series with missing data. Geophys Res Lett 28(16):3187–3190CrossRefGoogle Scholar
  26. Tartakovsky A, Nikiforov I, Basseville M (2014) Sequential analysis: Hypothesis testing and changepoint detection. CRC PresszbMATHGoogle Scholar
  27. Usevich K (2010) On signal and extraneous roots in singular spectrum analysis. Stat Interface 3(3):281–295MathSciNetCrossRefGoogle Scholar
  28. Van Huffel S, Chen H, Decanniere C, van Hecke P (1994) Algorithm for time-domain NMR data fitting based on total least squares. J Magn Reson Ser A 110:228–237CrossRefGoogle Scholar
  29. Zhigljavsky A, Golyandina N, Gillard J (2016a) Analysis and design in the problem of vector deconvolution. In: Kunert J, Müller HC, Atkinson CA (eds) mODa 11 - advances in model-oriented design and analysis. Springer International Publishing, pp 243–251Google Scholar
  30. Zhigljavsky A, Golyandina N, Gryaznov S (2016b) Deconvolution of a discrete uniform distribution. Stat Probab Lett 118:37–44MathSciNetCrossRefGoogle Scholar
  31. Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank time-series approximations. Stat Interface 10(1):5–18MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nina Golyandina
    • 1
  • Anton Korobeynikov
    • 1
  • Anatoly Zhigljavsky
    • 2
  1. 1.Faculty of Mathematics and MechanicsSaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.School of MathematicsCardiff UniversityCardiffUK

Personalised recommendations