Advertisement

Introduction: Overview

  • Nina Golyandina
  • Anton Korobeynikov
  • Anatoly Zhigljavsky
Chapter
Part of the Use R! book series (USE R)

Abstract

Chapter 1 is introductory; it outlines the main principles and ideas of SSA, presents a unified view on SSA, reviews its computer implementation in the form of the Rssa package, compares SSA with other methods of time series analysis, gives a short literature review, and provides references to all data sources used. In this chapter, the main concepts and generic structure of all methods of the book are introduced and explained; hence, the material of Chap. 1 is essential for the rest of the book.

References

  1. Alexandrov T (2009) A method of trend extraction using singular spectrum analysis. RevStat 7(1):1–22Google Scholar
  2. Allen M, Smith L (1996) Monte Carlo SSA: Detecting irregular oscillations in the presence of colored noise. J Clim 9(12):3373–3404CrossRefGoogle Scholar
  3. Andrews D, Herzberg A (1985) Data. A collection of problems from many fields for the student and research worker. Springer, New YorkGoogle Scholar
  4. Barrios-Muriel J, Romero F, Alonso FJ, Gianikellis K (2016) A simple SSA-based de-noising technique to remove ECG interference in EMG signals. Biomed Signal Process Control 30:117–126CrossRefGoogle Scholar
  5. Bozzo E, Carniel R, Fasino D (2010) Relationship between singular spectrum analysis and Fourier analysis: Theory and application to the monitoring of volcanic activity. Comput Math Appl 60(3):812–820MathSciNetCrossRefGoogle Scholar
  6. Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236MathSciNetCrossRefGoogle Scholar
  7. Broomhead D, King G (1986b) On the qualitative analysis of experimental dynamical systems. In: Sarkar S (ed) Nonlinear phenomena and chaos. Adam Hilger, Bristol, pp 113–144Google Scholar
  8. von Buttlar J, Zscheischler J, Mahecha MD (2014) An extended approach for spatiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets. Nonlinear Process Geoph 21:203–215Google Scholar
  9. Cadzow JA (1988) Signal enhancement: a composite property mapping algorithm. IEEE Trans Acoust 36(1):49–62MathSciNetCrossRefGoogle Scholar
  10. Chen Q, Weigelt M, Sneeuw N, van Dam T (2016) On time-variable seasonal signals: Comparison of SSA and Kalman filtering based approach. Springer International Publishing, Cham, pp 75–80Google Scholar
  11. Cleveland WS (1993) Visualizing data. Hobart PressGoogle Scholar
  12. Danilov D, Zhigljavsky A (eds) (1997) Principal components of time series: the “Caterpillar” method. St. Petersburg Press (in Russian)Google Scholar
  13. Filho ASF, Lima GAR (2016) Gap filling of precipitation data by SSA - singular spectrum analysis. J Phys Conf Ser 759(1):012,085Google Scholar
  14. Fraedrich K (1986) Estimating dimensions of weather and climate attractors. J Atmos Sci 43: 419–432Google Scholar
  15. Frigo M, Johnson SG (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231CrossRefGoogle Scholar
  16. Genkin D, Pachmanov L, Pipman I, Tromer E, Yarom Y (2016) Ecdsa key extraction from mobile devices via nonintrusive physical side channels. In: Proceedings of the 2016 ACM SIGSAC conference on computer and communications security. ACM, New York, NY, USA, CCS ’16, pp 1626–1638Google Scholar
  17. Ghil M, Allen RM, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson A, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):1–41Google Scholar
  18. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD, USAGoogle Scholar
  19. Golyandina N, Korobeynikov A (2013) Basic singular spectrum analysis and forecasting with R. Comput Stat Data Anal 71:943–954Google Scholar
  20. Golyandina N, Osipov E (2007) The “Caterpillar”-SSA method for analysis of time series with missing values. J Stat Plan Inference 137(8):2642–2653MathSciNetCrossRefGoogle Scholar
  21. Golyandina N, Shlemov A (2015) Variations of singular spectrum analysis for separability improvement: Non-orthogonal decompositions of time series. Stat Interface 8(3):277–294MathSciNetCrossRefGoogle Scholar
  22. Golyandina N, Shlemov A (2017) Semi-nonparametric singular spectrum analysis with projection. Stat Interface 10(1):47–57MathSciNetCrossRefGoogle Scholar
  23. Golyandina N, Stepanov D (2005) SSA-based approaches to analysis and forecast of multidimensional time series. In: Proceedings of the 5th St.Petersburg workshop on simulation, June 26–July 2, 2005. St. Petersburg State University, St. Petersburg, pp 293–298Google Scholar
  24. Golyandina N, Usevich K (2010) 2D-extension of singular spectrum analysis: algorithm and elements of theory. In: Olshevsky V, Tyrtyshnikov E (eds) Matrix methods: Theory, algorithms and applications. World Scientific Publishing, pp 449–473CrossRefGoogle Scholar
  25. Golyandina N, Zhigljavsky A (2013) Singular apectrum analysis for time series. Springer briefs in statistics. SpringerCrossRefGoogle Scholar
  26. Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series structure: SSA and related techniques. Chapman&Hall/CRCCrossRefGoogle Scholar
  27. Golyandina N, Korobeynikov A, Shlemov A, Usevich K (2015) Multivariate and 2D extensions of singular spectrum analysis with the Rssa package. J Stat Softw 67(2):1–78Google Scholar
  28. Groth A, Ghil M (2015) Monte Carlo singular spectrum analysis (SSA) revisited: Detecting oscillator clusters in multivariate datasets. J Climate 28(19):7873–7893CrossRefGoogle Scholar
  29. Hall MJ (1998) Combinatorial theory. Wiley, New YorkGoogle Scholar
  30. Harris T, Yan H (2010) Filtering and frequency interpretations of singular spectrum analysis. Physica D 239:1958–1967MathSciNetCrossRefGoogle Scholar
  31. Hassani H, Heravi S, Zhigljavsky A (2009) Forecasting European industrial production with singular spectrum analysis. Int J Forecast 25(1):103–118CrossRefGoogle Scholar
  32. Hassani H, Heravi S, Zhigljavsky A (2013) Forecasting UK industrial production with multivariate singular spectrum analysis. J Forecast 32(5):395–408MathSciNetCrossRefGoogle Scholar
  33. Hassani H, Webster A, Silva ES, Heravi S (2015) Forecasting U.S. tourist arrivals using optimal singular spectrum analysis. Tourism Manag 46:322–335CrossRefGoogle Scholar
  34. Hudson IL, Keatley MR (2017) Singular spectrum analytic (ssa) decomposition and reconstruction of flowering: Signatures of climatic impacts. Environ Model Assess 22(1):37–52CrossRefGoogle Scholar
  35. Hyndman R, Athanasopoulos G (2013) Forecasting: principles and practice. OTexts, URL http://otexts.org/fpp/, accessed on 28.07.2017
  36. Hyndman RJ (2013) Time Series Data Library. URL http://data.is/TSDLdemo, accessed on 10/08/2013
  37. Iqelan BM (2017) A singular spectrum analysis technique to electricity consumption forecasting. Int J Eng Res Appl 7(3):92–100CrossRefGoogle Scholar
  38. Karnjana J, Unoki M, Aimmanee P, Wutiwiwatchai C (2017) Tampering detection in speech signals by semi-fragile watermarking based on singular-spectrum analysis. Springer International Publishing, Cham, pp 131–140Google Scholar
  39. Kondrashov D, Ghil M (2006) Spatio-temporal filling of missing points in geophysical data sets. Nonlinear Process Geophys 13(2):151–159CrossRefGoogle Scholar
  40. Korobeynikov A (2010) Computation- and space-efficient implementation of SSA. Stat Interface 3(3):357–368MathSciNetCrossRefGoogle Scholar
  41. Korobeynikov A, Larsen RM, Wu KJ, Yamazaki I (2016) svd: Interfaces to various state-of-art SVD and eigensolvers. URL http://CRAN.R-project.org/package=svd, R package version 0.4
  42. Korobeynikov A, Shlemov A, Usevich K, Golyandina N (2017) Rssa: A collection of methods for singular spectrum analysis. URL http://CRAN.R-project.org/package=Rssa, R package version 1.0
  43. Kumar KS, Rajesh R, Tiwari RK (2017) Regional and residual gravity anomaly separation using the singular spectrum analysis-based low pass filtering: a case study from Nagpur, Maharashtra, India. Explor Geophys.Google Scholar
  44. Kurakin V, Kuzmin A, Mikhalev A, Nechaev A (1995) Linear recurring sequences over rings and modules. J Math Sci 76(6):2793–2915MathSciNetCrossRefGoogle Scholar
  45. Lakshmi K, Rao ARM, Gopalakrishnan N (2016) Singular spectrum analysis combined with ARMAX model for structural damage detection. Struct Control Health Monit.  https://doi.org/10.1002/stc.1960
  46. Lisi F, Nicolis O, Sandri M (1995) Combining singular-spectrum analysis and neural networks for time series forecasting. Neural Process Lett 2(4):6–10CrossRefGoogle Scholar
  47. Makridakis S, Wheelwright S, Hyndman R (1998) Forecasting: Methods and applications, 3rd edn. Wiley, New YorkGoogle Scholar
  48. Monselesan DP, O’Kane TJ, Risbey JS, Church J (2015) Internal climate memory in observations and models. Geophys Res Lett 42(4):1232–1242CrossRefGoogle Scholar
  49. Mudersbach C, Wahl T, Haigh ID, Jensen J (2013) Trends in high sea levels of German North Sea gauges compared to regional mean sea level changes. Cont Shelf Res 65:111–120CrossRefGoogle Scholar
  50. Pepelyshev A, Zhigljavsky A (2017) Ssa analysis and forecasting of records for earth temperature and ice extents. Stat Interface 10(1):151–163MathSciNetCrossRefGoogle Scholar
  51. de Prony G (1795) Essai expérimental et analytique sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l’eau et la vapeur de l’alkool à différentes températures. J de l’Ecole Polytechnique 1(2):24–76Google Scholar
  52. Salgado D, Cambero I, Olivenza JH, Sanz-Calcedo JG, López PN, Plaza EG (2013) Tool wear estimation for different workpiece materials using the same monitoring system. Procedia Eng 63:608–615CrossRefGoogle Scholar
  53. Sella L, Vivaldo G, Groth A, Ghil M (2016) Economic cycles and their synchronization: A comparison of cyclic modes in three European countries. J Bus Cycle Res 12(1):25–48CrossRefGoogle Scholar
  54. Shlemov A, Golyandina N (2014) Shaped extensions of singular spectrum analysis. In: 21st international symposium on mathematical theory of networks and systems, July 7–11, 2014. Groningen, The Netherlands, pp 1813–1820Google Scholar
  55. Sivapragasam C, Liong SY, Pasha M (2001) Rainfall and runoff forecasting with SSA–SVM approach. J Hydroinform 3(3):141–152CrossRefGoogle Scholar
  56. Vautard M, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D 35:395–424MathSciNetCrossRefGoogle Scholar
  57. Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D 58:95–126CrossRefGoogle Scholar
  58. Vile JW J L nnd Gillard, Harper PR, Knight VA (2012) Predicting ambulance demand using singular spectrum analysis. J Oper Res Soc 63(11):1556–1565CrossRefGoogle Scholar
  59. Wang S, Tang HL, turk LIA, Hu Y, Sanei S, Saleh GM, Peto T (2017) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002CrossRefGoogle Scholar
  60. Wang X, Wu J, Liu C, Wang S, Niu W (2016) A hybrid model based on singular spectrum analysis and support vector machines regression for failure time series prediction. Qual Reliab Eng Int 32(8):2717–2738, qRE-16-0186.R2CrossRefGoogle Scholar
  61. Watson PJ (2016) Identifying the best performing time series analytics for sea level research. Springer International Publishing, Cham, pp 261–278Google Scholar
  62. Weigend A, Gershenfeld N (eds) (1993) Time series prediction: Forecasting the future and understanding the past. Addison-Wesley, ReadingGoogle Scholar
  63. Wickham H, Chang W (2017) devtools: Tools to Make Developing R Packages Easier. URL http://CRAN.R-project.org/package=devtools, R package version 1.13.2
  64. Wu C, Chau K (2011) Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis. J Hydrol 399(3):394–409CrossRefGoogle Scholar
  65. Xiao Y, Liu JJ, Hu Y, Wang Y, Lai KK, Wang S (2014) A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting. J Air Transp Manag 39:1–11CrossRefGoogle Scholar
  66. Xin W, Chao L, Weiren X, Ying L (2015) A failure time series prediction method based on UML model. In: 2015 4th international conference on computer science and network technology (ICCSNT), vol 01, pp 62–70Google Scholar
  67. Yang Z, Bingham C, Ling WK, Zhang Y, Gallimore M, Stewart J (2012) Unit operational pattern analysis and forecasting using EMD and SSA for industrial systems. Springer, Berlin, Heidelberg, pp 416–423Google Scholar
  68. Zabalza J, Ren J, Wang Z, Marshall S, Wang J (2014) Singular spectrum analysis for effective feature extraction in hyperspectral imaging. IEEE Geosci Remote Sens Lett 11(11):1886–1890CrossRefGoogle Scholar
  69. Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S (2015) Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans Geosci Remote Sens 53(8):4418–4433CrossRefGoogle Scholar
  70. Zhang Q, Wang BD, He B, Peng Y, Ren ML (2011) Singular spectrum analysis and ARIMA hybrid model for annual runoff forecasting. Water Resour Manag 25(11):2683–2703CrossRefGoogle Scholar
  71. Zhigljavsky A (2010) Singular spectrum analysis for time series: Introduction to this special issue. Stat Interface 3(3):255–258MathSciNetCrossRefGoogle Scholar
  72. Zhigljavsky A, Golyandina N, Gillard J (2016a) Analysis and design in the problem of vector deconvolution. In: Kunert J, Müller HC, Atkinson CA (eds) mODa 11 - Advances in model-oriented design and analysis. Springer International Publishing, pp 243–251Google Scholar
  73. Zvonarev N, Golyandina N (2017) Iterative algorithms for weighted and unweighted finite-rank time-series approximations. Stat Interface 10(1):5–18MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nina Golyandina
    • 1
  • Anton Korobeynikov
    • 1
  • Anatoly Zhigljavsky
    • 2
  1. 1.Faculty of Mathematics and MechanicsSaint Petersburg State UniversitySaint PetersburgRussia
  2. 2.School of MathematicsCardiff UniversityCardiffUK

Personalised recommendations