Advertisement

Three applications of Euler’s formula

  • Martin Aigner
  • Günter M. Ziegler
Chapter

Abstract

A graph is planar if it can be drawn in the plane ℝ2 without crossing edges (or, equivalently, on the 2-dimensional sphere S2). We talk of a plane graph if such a drawing is already given and fixed. Any such drawing decomposes the plane or sphere into a finite number of connected regions, including the outer (unbounded) region, which are referred to as faces. Euler’s formula exhibits a beautiful relation between the number of vertices, edges and faces that is valid for any plane graph. Euler mentioned this result for the first time in a letter to his friend Goldbach in 1750, but he did not have a complete proof at the time. Among the many proofs of Euler’s formula, we present a pretty and “self-dual” one that gets by without induction. It can be traced back to von Staudt’s book “Geometrie der Lage” from 1847.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Martin Aigner
    • 1
  • Günter M. Ziegler
    • 1
  1. 1.Institut für MathematikFreie Universität BerlinBerlinGermany

Personalised recommendations